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Abstract
Single-image nonparametric blind super-resolution is a fundamental image restoration problem yet largely ignored in the past 
decades among the computational photography and computer vision communities. An interesting phenomenon is observed 
that learning-based single-image super-resolution (SR) has been experiencing a rapid development since the boom of the 
sparse representation in 2005s and especially the representation learning in 2010s, wherein the high-res image is generally 
blurred by a supposed bicubic or Gaussian blur kernel. However, the parametric assumption on the form of blur kernels does 
not hold in most practical applications because in real low-res imaging a high-res image can undergo complex blur processes, 
e.g., Gaussian-shaped kernels of varying sizes, ellipse-shaped kernels of varying orientations, curvilinear kernels of varying 
trajectories. The paper is mainly motivated by one of our previous works: Shao and Elad (in: Zhang (ed) ICIG 2015, Part III, 
Lecture notes in computer science, Springer, Cham, 2015). Specifically, we take one step further in this paper and present 
a type of adaptive heavy-tailed image priors, which result in a new regularized formulation for nonparametric blind super-
resolution. The new image priors can be expressed and understood as a generalized integration of the normalized sparsity 
measure and relative total variation. Although it seems that the proposed priors are simple, the core merit of the priors is 
their practical capability for the challenging task of nonparametric blur kernel estimation for both super-resolution and 
deblurring. Harnessing the priors, a higher-quality intermediate high-res image becomes possible and therefore more accu-
rate blur kernel estimation can be accomplished. A great many experiments are performed on both synthetic and real-world 
blurred low-res images, demonstrating the comparative or even superior performance of the proposed algorithm convinc-
ingly. Meanwhile, the proposed priors are demonstrated quite applicable to blind image deblurring which is a degenerated 
problem of nonparametric blind SR.

Keywords Super-resolution · Blind deconvolution · Camera shake deblurring · Discriminative models · Convolutional 
neural networks · Normalized sparsity · Relative total variation

1 Introduction

As a fundamental image restoration problem, single-frame 
super-resolution (SISR) has undergone a rapid development 
since the pioneering work by Freeman and Pasztor [1] and 
Baker and Kanade [2]. Several comprehensive surveys [3–6] 
provide detailed elaborations, comparisons and comments 
on the super-resolution algorithms up to 2013, wherein it 
is noted clearly that the learning-based strategies manifest 
more and more potentials in terms of both accuracy and 
efficiency, as compared against the popular variational meth-
ods in the scenario of multi-frame super-resolution. In the 
recent few years, single-frame super-resolution has experi-
enced another round of boom [82–84] because of the strong 
return of modern neural networks, i.e., deep learning [7–10, 

 * Wen-Ze Shao 
 shaowenze1010@163.com

1 College of Telecommunications and Information 
Engineering, Nanjing University of Posts 
and Telecommunications (NUPT), Nanjing, China

2 National Engineering Research Center of Communications 
and Networking, NUPT, Nanjing, China

3 School of Electrical and Computer Engineering, Georgia 
Institute of Technology, Atlanta, Georgia

4 School of Automation, Southeast University, Nanjing, China
5 School of Science, Nanjing Audit University, Nanjing, China
6 School of Computer Science and Communication, KTH 

Royal Institute of Technology, Stockholm, Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-019-00876-1&domain=pdf


886 Journal of Mathematical Imaging and Vision (2019) 61:885–917

1 3

27–37, 78, 80, 81], achieving convincing and sometimes 
amazing performance in terms of both objective and subjec-
tive assessments.

1.1  Learning‑Based SISR

The basic idea of learning-based SISR approaches is to learn 
a single or multiple mappings between the low-res (LR) and 
high-res (HR) domains by harnessing a large set of training 
image pairs, where every HR training image is blurred by a 
supposed bicubic or Gaussian blur kernel. To make clear the 
motivation in the present paper, a short review on the repre-
sentative learning-based SISR approaches is provided, which 
essentially originate from three kinds of machine learning 
methodologies, i.e., manifold learning, sparse learning and 
deep learning, based on which four types of SISR algorithms 
are summarized in the following.

Neighborhood embedding Two representative SISR 
approaches of this type are [11, 12], supposing that patches 
of an LR image and its HR counterpart form manifolds with 
similar local geometric characteristics in two distinct feature 
spaces, roughly implying that as long as enough sampled 
patches are available, patches in the HR feature space can 
be recovered as a weighted average of local neighbors using 
the same weights as ones in the HR feature space, where the 
estimation of weights may be formulated into a constrained 
least squares problem. One may refer to [13, 14] for recent 
advancements in this branch.

Coupled dictionary learning Two representative SISR 
methods of this type are [15, 16], whose core idea is to learn 
coupled dictionaries for the LR and HR image patches while 
forcing exactly the same sparse coding coefficients in the 
two domains. Then, a test HR patch can be reconstructed 
by using the sparse coding coefficients of its counterpart 
LR patch and the pre-learned HR dictionary. The idea ini-
tially originated from Yang et al. [15] later improved in 
Zeyde et al. [16] for both accuracy and speed. Furthermore, 
semi-coupled dictionary learning methods [17–23, 79] are 
proposed recently, aiming to relax the same sparse coding 
assumption while at the cost of more computational burden.

Locally linear regression Inspired by the above learning 
principles, several models emerge proposing to replace the 
time-consuming sparse coding by locally linear regression. 
Two representative algorithms in this type are [24, 25]. For 
instance, instead of building on the L1-norm-based sparse 
representation as in [15, 16], ANR (anchored neighborhood 
regression) [24] formulates a SISR mapping into multiple 
linear operators, which are pre-computed using the clustered 
atoms (termed “anchor neighbors”) so as to obtain an over-
all switched linear mapping from LR to HR images. Later, 
A+ [25] improves [24] in a straightforward manner with 
clustered training patches as anchor neighbors. Except for 

[24, 25], a novel locality idea is also established in [26] via 
a hierarchical structure in a random forest.

Convolutional neural networks Much more recently, 
extraordinary success achieved by deep learning in com-
puter vision inspires the use of convolutional neural net-
works (CNN) with deep architecture for SISR [27, 28]. For 
instance, multi-layers of collaborative autoencoders are 
stacked together in [27] for robust matching of self-similar 
patches. A deep CNN is trained in [28] to directly learn a 
nonlinear mapping from LR to HR domains in a similar 
principle to coupled dictionary learning [15, 16]. As exten-
sions to [27, 28], several more advanced deep architectures 
have been developed for better SISR, such as very deep CNN 
[29], deeply recursive CNN [30], perception-induced CNN 
[31] and so on [32–37]. Currently, the CNN-based method-
ologies become the absolute mainstream for SISR and are 
also successfully applied to the specific face hallucination 
problem [38, 39, 78].

1.2  Nonparametric Blind SISR

Though SISR has earned intensive attention in the past 
two decades, a careful inspection reveals that there exists 
a common assumption in the current literature, namely, the 
high-res image is blurred by a supposed bicubic or Gaussian 
blur kernel with a known standard deviation. And actually, 
most of existing learning-based approaches use the bicubic 
low-pass filter (implemented via MATLAB’s default func-
tion imresize) to generate the LR-HR training pairs. We note 
that the parametric assumption on the form of blur kernels 
apparently does not hold in most practical applications, 
that is because an HR image can undergo complicated blur 
processes in real low-res imaging, e.g., Gaussian-shaped 
kernels of varying sizes, ellipse-shaped kernels of vary-
ing orientations, curvilinear kernels of varying trajectories. 
This largely ignored problem not only exists in the current 
learning-based methods but also the classic reconstruction-
based approaches such as [40–42]. Indeed, advanced image 
models, either the learning-based or the variational ones, are 
important to the final SISR quality. However, an interest-
ing critical study by Efrat et al. [43] demonstrates that, for 
a general SISR problem, the influence of an accurate blur 
kernel is significantly larger than that of an advanced image 
model. What is more surprising as phrased that, “an accu-
rate reconstruction constraint (i.e., knowing the blur kernel) 
combined with a simple gradient regularization achieves 
super-resolution results almost as good as those of state-of-
the-art algorithms with sophisticated image priors.” Hence, 
as super-resolving a real blurry low-res image, precise and 
robust estimation of nonparametric blur kernels should be 
considered the first most important thing, without which the 
final high-res image would manifest either ringing or blur-
ring artifacts as demonstrated in [43].
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According to intensive literature review, only few works 
have addressed estimating an accurate blur kernel in the sce-
nario of SISR. Among few such works a parametric model 
is often assumed, and the Gaussian is a common choice, e.g., 
[44–46]. However, as the assumption does not coincide with 
the actual blur model, e.g., combination of out-of-focus and 
camera shake, we will naturally get low-quality SR results. 
To the best of our knowledge, the first daring attempt toward 
nonparametric blur kernel estimation for single-image SR 
is made in [47] and its problem solution also applies to 
blind image deblurring. However, it restricts its treatment 
to single-peak blur kernels and does not originate from a 
rigorous optimization principle but relies on empirical detec-
tion and prediction of step edges as important clues to blur 
kernel estimation. A second noteworthy work for nonpara-
metric blind SR is the one by Michaeli and Irani [48] whose 
essential idea is to harness the recurrence property of natu-
ral image patches across different scales. It should be noted 
that the performance of this approach relies heavily on the 
searched nearest neighbors to the query patches in the input 
blurry low-res image. Besides, as claimed in [49], the mod-
eling idea in [48] cannot be naively applicable to the blind 
deblurring task [85–89]. Taking into account the similarity 
between blind deblurring and blind super-resolution in terms 
of nonparametric blur kernel estimation, the first author of 
the present paper and his collaborator recently propose to for-
mulate both blind problems in a common modeling perspec-
tive [50], i.e., bi-L0–L2-norm regularization [51]. In spite of 
that the endeavor being made in [50] is preliminary, it really 
brings us an enlightenment that the gap between two blind 
restoration problems can be narrowed to a certain degree. 
Indeed, the attention given to the nonparametric blind SR is 
rather limited, but the counterpart blind deblurring has been 
intensively studied since the seminal work of Fergus et al. 
on camera shake removal [52]. Thus, a natural possibility is 
to extend existing blind deblurring models to the blind SR 
task in a framework similar as that of [50]. Very recently, 
Lai et al. [53] conduct a systematically comparative study 
on state-of-the-art blind deblurring algorithms which were 
published during 2006–2015. They reveal a cruel fact that the 
performance of these methods is generally found inferior on 
real-blurred images to that on one or another synthetic bench-
mark dataset. That is, blind deblurring models at hand are far 
from being practical in terms of the final deblurring quality. 
We notice that an interesting breakthrough is just made by 
Pan et al. [54, 87]. They impose an L0-norm-based prior in 
both image gradient and dark channel domains, leading to 
advanced state-of-the-art performance in various kinds of 
imaging scenarios, e.g., natural, manmade, low-illumination, 
text and face images. However, on the one hand, the L0-norm-
based prior in Pan et al. [54] is not discriminative as a whole 
just similar to the blind models in Lai et al. [53]; on the other 
hand, their numerical algorithm is computationally expensive 

which is another major concern as developing blind SR meth-
ods. Very recently, Pan et al. [55] extend their L0-norm-based 
blind model [56] defined in both image gradient and intensity 
domains to the blind SR problem, which largely resembles 
that of ours in [50]. However, nonparametric blind SR with 
an image prior in either [56] or [54] will bear a much higher 
computational burden, and hence in terms of the numerical 
efficiency, either Pan et al. [54] or Pan et al. [56] is not a 
feasible and effective candidate to blind SR.

1.3  Contributions in This Paper

In this paper, we build on our preliminary work in [50] 
while taking a step further. Specifically, we develop a novel 
ADMM method for nonparametric blind SR by proposing a 
type of Lα-norm-based adaptive heavy-tailed image priors, 
to some extent, which can be expressed and understood as a 
generalized integration of the previous normalized sparsity 
measure [67] and relative total variation [72]. Combining 
the adaptive priors and convolutional consistency constraint 
(CCC) as advocated in [50], a higher-quality intermediate 
high-res image becomes possible and, hence, more accurate 
blur kernel estimation can be achieved for nonparametric 
blind SR. As for minimization of the resulting functional, 
an ADMM-based iterative algorithm is derived for estimat-
ing the intermediate high-res image and nonparametric blur 
kernel alternatingly, during which the conjugate gradient 
algorithm is exploited for running efficiency. A great many 
experiments are performed on both synthetic and real-world 
blurry low-res images, demonstrating the comparative or 
even superior performance of the proposed method convinc-
ingly. An empirical study is also made toward appropriate 
choice of existing SISR algorithms for the convolutional 
consistency constraint. The candidates come from previ-
ously introduced four categories of learning-based meth-
ods, i.e., neighborhood embedding, coupled dictionary 
learning, locally linear regression, convolutional neural 
networks, considering their potential advantages in terms 
of both accuracy and efficiency. It is not surprising that the 
empirical observation conforms to that in [50], i.e., ANR 
(anchored neighborhood regression) [24] is demonstrated 
the more robust engine for our purpose than other candidates 
including the advanced deep learning-based methodology. In 
the meantime, the proposed adaptive priors are also applied 
to the degenerated task of nonparametric blind SR, i.e., blind 
deblurring. The new priors are demonstrated fit the blind 
deblurring problem as well.

It seems that the mathematical novelty of the proposed 
approach is not that sufficient considering the new priors is 
actually a combination of two off-the-shelf ones, i.e., [67, 72]. 
Nevertheless, we believe that the core merit of the new priors 
is their practical capability for the challenging task of non-
parametric blur kernel estimation for both super-resolution 
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and deblurring. In the below, we have made further explana-
tions on the motivation and highlight of the proposed method.

(1) First of all, in the literature very few works have 
addressed accurate blur kernel estimation toward the 
problem of nonparametric blind super-resolution. The 
difficulty lies in that, on the one hand, there has lacked 
an effective modeling framework for the problem for a 
long time until the emergence of several recent refer-
ences, e.g., [47, 48, 50]. Thus, we make one step fur-
ther in this paper trying to improve our previous work 
[50] with the proposal of a kind of more effective image 
priors for nonparametric blur kernel estimation. On the 
other hand, this paper is still motivated by the expecta-
tion that a really good image model for nonparametric 
blind super-resolution has to be also more effective to 
nonparametric blind deblurring. The reason is that non-
parametric blind deblurring is apparently a degenerated 
task of nonparametric blind super-resolution. However, 
the blind deblurring results in Sect. 4.3 of this paper 
reveal that the bi-L0–L2-norm regularization in [50] is 
obviously not comparative to the proposed heavy-tailed 
priors, in terms of both estimation precision and robust-
ness. Hence, it is believed that the core contribution of 
this paper is not trivial at least in the unified modeling 
point of view for practice. As for the nonparametric 
blind method [47], it restricts its treatment to single-
peak blur kernels and builds on empirical detection 
and prediction of step edges as critical clues to blur 
kernel estimation, while, as for the method in [48] for 
nonparametric blind SR, its proposed model cannot be 
applicable to blind deblurring as validated in [49].

(2) On the second, the present paper tries to address non-
parametric blur kernel estimation for both super-reso-
lution and image deblurring in a simpler modeling per-
spective, which is purely gradient-based and therefore 
allows us to derive a flexible numerical optimization 
scheme in the variational framework. To achieve the 
goal, a new type of spatially adaptive weights tailored 
specifically for blur kernel estimation is proposed and 
just embedded into the existing hyper-Laplacian pri-
ors. Indeed, as pointed out by one of the reviewers, 
in the literature there exist related works using local 
weights in both convex and non-convex gradient pen-
alties. Such weighted schemes are also very popular 
among the signal and image processing community, 
e.g., [95, 96]. However, it is really non-trivial to make 
such a contribution practically work for both blind res-
toration problems, despite that the critical components 
in the proposed adaptive weights are the off-the-shelf 
ones, i.e., normalized sparsity measure and relative 
total variation. For one thing, although the normalized 
sparsity measure [67] is the first discriminative regu-

larization specifically exploited for nonparametric blur 
kernel estimation, its practical performance is quite 
limited according to the experimental results on both 
synthetic and real-world data in recent two studies [53, 
54]. For another, this work reveals an interesting and 
instructive fact that the principle of discriminativeness 
between a sharp image and its blurry counterpart in 
the image prior is not the solely essential element for 
nonparametric blind restoration; a really good image 
prior for the problem should be also capable of dis-
criminating between the strong edge and weak texture 
structures. What makes us particularly surprised is that 
such double principles of discriminativeness (DPD) are 
simply implemented via re-weighting the known gra-
dient-based hyper-Laplacian priors. To the best of our 
knowledge, it is the first time that the concept of DPD 
is clarified for the nonparametric blind restoration prob-
lems. Apparently, those L0-norm-based priors [51, 54, 
56, 87] including the bi-L0–L2-norm regularization do 
not satisfy DPD as a whole. Besides, [54, 56, 87] have 
essentially formulated image priors in both the gradient 
and intensity domains and therefore are not conceptu-
ally simple and numerically efficient. The comparison 
on the running efficiency among the proposed priors 
and those of [54, 56] for blind deblurring is additionally 
made in Sect. 4.3 of this paper as suggested by one of 
the reviewers.

We organize the rest part of the paper as follows. Sec-
tion 2 provides a short review on Lα-norm-based image 
priors and their applications in image processing and com-
putational imaging, based on which the proposed adaptive 
heavy-tailed priors are presented, elaborated and harnessed 
to regularize the nonparametric blind SR problem. In Sect. 3, 
the ADMM-based numerical algorithm is deduced for alter-
natingly iterative update of the intermediate high-res image 
and nonparametric blur kernel, with possible implementa-
tion details clarified. Section 4 analyzes the proposed blind 
SR approach on both synthetic and realistic blurred low-res 
images, along with comparisons against Michaeli and Irani 
[48] and our previous work [50]. Additionally, the applica-
bility of our new priors to blind deblurring is tested in this 
section. The paper is finally concluded in Sect. 5.

2  Nonparametric Blind Super‑Resolution 
Using Adaptive Heavy‑Tailed Image Priors

2.1  Lα‑Norm‑Based Heavy‑Tailed Priors for Image 
Restoration: A Brief Review

For the sake of better understanding the proposed method 
in this paper, several previous works using Lα-norm-based 
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heavy-tailed priors are introduced in this subsection. With-
out loss of generality, the heavy-tailed distribution of image 
gradients termed hyper-Laplacian priors [62] is given as 
p(u) ∝

∏
p∈� exp{− �(��xup�� + ��yup��)}, where p ∈ � 

denotes a pixel index in the image region � , 0 < 𝛼 ≤ 1 
amounts to imposing the Lα-norm-based regularization on 
the image gradients, and � is a positive tuning parameter 
controlling the strength of regularization, and �o denotes 
the derivative operator in the horizontal/vertical direction. 
According to the literature review, the above heavy-tailed 
priors are shown effective for a range of image/video restora-
tion problems. For instance, as � is set as 1, p(u) degenerates 
to the famous total variation (TV) model which has been 
exploited for non-blind image/video deblurring in [57, 58], 
blind image deblurring in [59, 60] and non-blind single-/
multi-frame super-resolution in [41, 61]. Nevertheless, it 
has been empirically proved in [62, 63] that p(u) with � less 
than 1 usually leads to higher-quality non-blind deblurring 
and super-resolution results. Specifically, 0.5 ≤ � ≤ 0.8 has 
been advocated for modeling the heavy-tailed distribution 
of gradients in the natural scenes.

However, as it turns to blind image restoration, a common 
consensus has been reached that unnatural image models 
are required and requested for the success of blur kernel 
estimation [53], which indicates that ultra-sparse priors 
should be harnessed to model the distribution of natural 
image gradients. For example, two unnatural image priors 
based on the Lα-norm have been exploited for blind image 
deblurring in [64, 65], wherein the parameter � is set as 0.3 
in [64] and a non-increasing sequence 0.8, 0.8, 0.6, 0.6, 0.6, 
0.6, 0.4,…, 0.4 during iteration in [65]. More recently, p(u) 
defined above is boosted into a family of iteration-specific 
priors in [66] for blind image deblurring, where each itera-
tion has its own model parameters {�(t), �(t)} learned from 
a training set by a discriminative learning model. However, 
it should be noted that a counter-intuitive phenomenon has 
been observed, i.e., the parameter � is allowed to be negative 
and is found to contribute even more in estimating the coarse 
shape of blur kernels.

2.2  Spatially Adaptive Heavy‑Tailed Priors

Considering both the modeling effectiveness and computa-
tional efficiency, a type of new heavy-tailed image priors is 
proposed to regularize the blur kernel estimation process, 
expressed as

where �x,p(u) and �y,p(u) are the spatially adaptive weights 
defined for each image pixel in the horizontal and vertical 
directions, embodying the core modeling ideas in this paper. 

(1)

p(u) ∝
∏

p∈�

exp
{
−�x,p(u) ⋅

|||�xup
|||
�

− �y,p(u) ⋅
|||�yup

|||
�}

,

On the one hand, p(u) as in (1) is expected potentially dis-
criminative so as to ensure the success of blur kernel estima-
tion, i.e., sharp high-res images should be favored rather than 
their blurred counterparts and then the delta kernel can be 
avoided. On the other hand, p(u) as in (1) is expected ease of 
fast iterative estimation of the nonparametric blur kernel and 
intermediate sharp image. With a literature review, the first 
gradient-based influential idea toward discriminative mod-
eling for blind image deblurring is the proposal of normal-
ized sparsity measure [67], whose practical performance is 
however much questionable according to the results on both 
synthetic and real-world experiments as indicated in [53, 
54]. Another hint from the common consensus that unnatural 
image priors are desired for kernel estimation is that faint 
textures/details are harmful to accurate kernel estimation and 
therefore should be removed in the intermediate sharp image 
[68–71]. Thus, in order to boost the discriminativeness of 
the normalized sparsity measure and more importantly its 
practical performance in kernel estimation, the spatially 
adaptive weight �o(up), o ∈ {x, y}, is presented as

where � is a figure between 0 and 1, � is a small positive 
value to avoid division by zero, and o(u) and o(p) are 
defined, respectively, as

where �(u) denotes the entire image field,  (p) is a rec-
tangular region centered at the pixel p, and �p,q is defined 
according to the spatial affinity as a distance function of 
Gaussianity, i.e.,

where � is a spatial scale to be specified in implementation.
Now let us dive into (1) and (2) for more details on the 

modeling behaviors of the proposed heavy-tailed priors. 
To make it clearer, we study the negative logarithm of p(u) 
which is denoted as

(2)�o(up) =
1 −�

o(u) + �
+

�

o(p) + �
,

(3)o(u) =

√ ∑

p∈�(u)

|||�oup
|||
2

= ‖‖�ou‖‖2,

(4)o(p) =

||||||

∑

q∈ (p)

�p, q ⋅ �ouq

||||||
,

(5)�p,q ∝ exp

(
−
(xp − xq)

2 + (yp − yq)
2

2�2

)
,

(6)

(�u) ≜ − log p(u) =
∑

p∈�

�x(up) ⋅
|||�xup

|||
�

+ �y(up) ⋅
|||�yup

|||
�

.



890 Journal of Mathematical Imaging and Vision (2019) 61:885–917

1 3

That is, (�u) can be viewed as the deterministic reg-
ularization on the image u. We note that the terms o(u) 
and o(p) were previously used in [67, 72], respectively. 
Particularly, as � is set to be 1, proposed regularization (6) 
degenerates to the normalized sparsity measure upon � 
specified as 0, while to the relative total variation (RTV) 
upon � specified as 1. Hence, (6) is actually a gradient-
based composite model specifically designed for blur kernel 
estimation. It should be also noted that RTV was originally 
proposed for structure-preserving image filtering and manip-
ulation, whose value in a window only containing textures 
is statistically found smaller than that in a window also 
including structural edges. To the best of our knowledge, 
none of existing works exploits RTV as a regularization 
term for nonparametric blind SISR. Hence, it can be intui-
tively concluded that the core idea of the proposed priors 
is to amend the generalized normalized sparsity measure ∑

p∈� ��xup��∕x(u) +
∑

p ��yup��∕y(u) by the additional 
generalized RTV 

∑
p∈���xup��∕x(p) +

∑
p��yup��∕y(p), in 

the sense that a higher-quality intermediate sharp image with 
interfering details/textures removed is to be obtained as a 
critical assurance to accurate kernel estimation. Experimen-
tal results along with empirical analysis are to be provided 
in Sect. 4 for better understanding the inherent superiority 
of the proposed model.

2.3  Blind Super‑Resolution Using Adaptive 
Heavy‑Tailed Priors: A First Look

To formulate the proposed approach to nonparametric blind 
SR, the low-res imaging process should be firstly clarified.

Let � be the vector form of the low-res image g with size 
N1 × N2, and � the vector form of the corresponding high-res 
image u with size sN1 × sN2, where s > 1 is an up-sampling 
factor. Then, the relation between � and � can be expressed 
as two equivalent matrix–vector forms

where � and � are assumed as two BCCB (block circulant 
with circulant blocks) convolution matrices corresponding 
to the vectorized high-res image � and blur kernel � , and 
� denotes a down-sampling matrix, and � is the possible 
zero-mean white Gaussian noise. Note that in implementa-
tion image boundaries are smoothed in order to suppress the 
border artifacts, just the same as in [50]. Then, our task is 
to infer � and � provided only the low-res image � and the 
up-sampling factor s. As emphasized above, our proposed 
adaptive heavy-tailed priors are unnatural since faint details/
textures are to be smeared out among the blur kernel estima-
tion. Hence, the nonparametric blind SR task is divided into 
two independent stages, i.e., (a) alternatingly estimating the 

(7)� = ��� + �

(8)� = ��� + �

nonparametric blur kernel � and the intermediate high-res 
image � using the derived numerical scheme to be speci-
fied in Sect. 3; (b) estimating the final sharp high-res image 
with a state-of-the-art non-blind SR method. As being 
inspired by [43] and validated in [50], the fundamental TV 
prior p(u) ∝

∏
p∈� exp{− �(��xup� + ��yup�)} can serve the 

non-blind SR problem reasonably in terms of the restora-
tion quality, and therefore, the TV-based fast non-blind SR 
algorithm specifically proposed in [41] is exploited in this 
paper. We should note that those more advanced learning-
based non-blind SR approaches can be tried, e.g., [11–37], 
however, which are usually trained with a bicubic kernel. 
Actually, a more appropriate choice can be tried, i.e., the 
plug-and-play-based non-blind SR scheme [74], which may 
incorporate a state-of-the-art image denoiser such as BM3D 
[76] and the recent CNN-based scheme [97].

As demonstrated in [50], the accuracy of blur kernel esti-
mation for the blind SR task is also affected by the jagging 
artifacts along the salient edge structures except for the inter-
fering details/textures. Then, the complete formulation for 
alternatingly estimating the nonparametric blur kernel � and 
the intermediate high-res image � can be given as

where �, �, � are positive tuning parameters, (∇�) is the 
vectorized form of the regularization term (�u) , and 
�� ≜ [�x�;�y�], wherein �

x
� = [�

x
�1, �x�2,… , �

x
�
sN1×sN2

]T , 
�y� = [�y�1, �y�2,… , �y�sN1×sN2

]T and �x,�y are the convo-
lutional matrices corresponding to the partial derivative 
operators �x, �y , and the last term is the L0.5-norm-based 
regularization on the blur kernel k which is an empirical 
choice just similar to the conventional practice made in the 
blind deblurring community. To be noted that (��) is 
responsible for regulating the accurate salient edges as core 
clues to kernel estimation, which, however, cannot be 
achieved without the convolutional consistency constraint 

(CCC) [50], i.e., 
‖‖‖‖

⌣

� −��
‖‖‖‖

2

2

, due to the unavoidable jagging 

artifacts produced in the naïve up-sampling process. The 
rationale in the CCC is that using an appropriate learning-
based SR model which is generated with a bicubic kernel, 
the super-resolved blurry image ⌣� approximately satisfies 
the relation �� ≈

⌣

� . To gain the idea of proposed energy (9) 
intuitively, four representative learning-based non-blind SR 
models are experimented considering their inbred advan-
tages in terms of both accuracy and efficiency, including 
neighborhood embedding (NE) [12], joint sparse coding 
(JSC) [16], anchored neighborhood regression (ANR) [24] 
and deep convolutional network (DCN) [27].

In Fig. 1, the low-res version of a high-res image “bird” 
is provided, which is blurred by a 19 × 19 Gaussian kernel 

(9)

�̂, �̂ = argmin
�,�

𝜂

2
‖� − ���‖2

2
+ 𝜆(��) +

𝛽

2

����
⌣

� −��
����

2

2

+ ‖�‖0.5
0.5
,
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with standard deviation 2.5 and down-sampled by a factor 
3. Note that during inference the proposed approach is blind 
to the blur kernel shape, size and standard deviation. We just 
assume the kernel size as 31 × 31 which is normally large 
enough for the blind SR problem. The true blur kernel is 
also presented in the first column of Fig. 1 accompanied with 
the original high-res image “bird.” The remaining columns 
provide the non-blind SR results by the above-mentioned 
learning-based approaches as well as our blind SR method 
assisted by each of them, respectively. For example, the sec-
ond column presents two SR images using ANR [24] and 
our method assisted by ANR as formulated in (9), simply 
denoted as Blind-ANR for convenience of description. It 
is seen that the outputs of four non-blind SR methods [12, 
16, 24, 27] are all blurry images, while our blind approach 
is able to generate visually clear images. The metric PSNR, 
i.e., peak signal-to-noise ratio, is used to evaluate those non-
blind and blind super-resolved images quantitatively. We 
also use the metric SSD, i.e., sum of squared difference [73], 
to quantify the error between the estimated blur kernel and 
its counterpart ground truth. It is apparent that Blind-ANR 
has achieved the best performance in terms of image PSNR 
in this example where the estimated blur kernel most resem-
bles the ground truth in terms of kernel SSD. Furthermore, 
we provide another illustrative example in Fig. 2 where the 
high-res image “alphabet table” is blurred by a nonparamet-
ric motion blur kernel of size 11 × 11 and down-sampled by 
a factor 2. We see that Blind-ANR outperforms Blind-DCN, 
Blind-JSC and Blind-NE by a large margin in terms of image 
PSNR in this example, and that the four blind approaches 

also overwhelm the corresponding non-blind counterparts. 
In the meantime, it is conjectured from this example that the 
kernel metric SSD may be not absolutely fair for evaluating 
the performance of nonparametric blind SR approaches. In 
brief, above two examples demonstrate well the feasibility 
and effectiveness of our adaptive heavy-tailed image priors 
and validate that the non-blind SR method ANR [24] can be 
used as a more robust engine for our framework compared 
with several other candidates including the advanced deep 
learning-based method [27]. Not surprisingly, that conforms 
to the empirical finding in [50]. It is noted that a systematic 
empirical study can be conducted on the choice of non-blind 
SR algorithms especially toward those more recent deep 
learning-based approaches [29–37], which is, however, not 
the prime focus of this paper.

3  Numerical Algorithm

In order to make the algorithmic description smooth, the 
vectorized regularization (��) is explicitly written as

w h e r e  �T
o
(�) ≜ [�

o
(u1,1), �o(u1,2),… , �

o
(u1,sN2

);⋯ ⋯ ;

�
o
(u

sN1,1
), �

o
(u

sN1,2
),… , �

o
(u

sN1,sN2
)] is the vectorized weight, 

and  ��(�o
�) ≜ [|�

o
�1|� , |�o�2|� ,… , |�

o
�
sN1×sN2

|�]T , o ∈

{x, y}. We now turn to discuss the numerical scheme for 
minimizing functional (9) with respect to the intermediate 
sharp high-res image u and the nonparametric blur kernel 

(10)(∇�) ≜ �T
x
(�) ⋅��(�x�) + �T

y
(�) ⋅��(�y�),

Fig. 1  An illustrative example of the proposed approach to non-
parametric blind SR harnessing advanced learning-based methods, 
including ANR [24], DCN [27], JSC [16], NE [12]. First row: low-res 
image � and non-blind super-resolved images ⌣

� ; second row: origi-
nal high-res image � and blind super-resolved images accompanied 

by the true and estimated blur kernels. The image PSNR and kernel 
SSD are calculated and provided for quantitative evaluation. The 
proposed Blind-ANR has achieved the best performance in terms of 
image PSNR in this example where the estimated blur kernel most 
resembles the ground truth in terms of kernel SSD
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k. Here, we do not attempt to provide a rigorous theoreti-
cal analysis on the existence of a global minimizer of (9) 
or further make a claim regarding the convergence of the 
proposed numerical scheme. Instead, our concentration is 
on a practical algorithm considering the blind nature of our 
problem. Normally, the problem can be directly expressed as 
an alternating minimization of (9), i.e., provided the (i − 1)
th iterative solutions �(i−1) and �(i−1) , �(i) and �(i) can be 
obtained by, respectively, solving (11) and (12) as follows

where 1 ≤ i ≤ I = 10, �(i−1) and �(i) are the convolution 
matrices corresponding to the estimates �(i−1) and �(i) , and 
(�(i−1),��) is an iterative version of (��) as expressed 
in (10), i.e.,

(11)
�(i) = argmin

�

𝜂

2

‖‖‖� − ��(i−1)�
‖‖‖
2

2
+ 𝜆(�(i−1),��)

+
𝛽

2

‖‖‖‖
⌣

� −�(i−1)�
‖‖‖‖

2

2

,

(12)

�(i) = argmin
�

𝜂

2

���� − ��(i)�
���
2

2
+

𝛽

2

����
⌣

� − �(i)�
����

2

2

+ ‖�‖0.5
0.5
,

3.1  Updating the Intermediate High‑Res Image

In this subsection, the well-known ADMM methodology is 
harnessed to solve non-convex minimization problem (11) 
by introducing an auxiliary variable � ≜ [�x;�x] which is used 
to replace ∇� ≜ [�x�;�y�] in (13). We note that although 
ADMM is known to not always converge in non-convex set-
tings, it can really serve as a powerful heuristic for the blind 
SR problem considered here.

Specifically, (11) can be now transformed into a con-
strained problem as

(13)
(�(i−1),∇�) ≜ �T

x
(�(i−1)) ⋅��(�x�) + �T

y
(�(i−1)) ⋅��(�y�).

(14)

�(i), �(i) = argmin
�,�

𝜂

2

‖‖‖� − ��(i−1)�
‖‖‖
2

2

+ 𝜆(�(i−1), �) +
𝛽

2

‖‖‖‖
⌣

� −�(i−1)�
‖‖‖‖

2

2

s.t. �
x
= �

x
�, �

y
= �

y
�.

Fig. 2  An illustrative example of the proposed approach to nonpara-
metric blind SR harnessing advanced learning-based methods includ-
ing ANR [24], DCN [27], JSC [16], NE [12]. First row: low-res 
image � and non-blind super-resolved images ⌣

� ; second row: origi-
nal high-res image � and blind super-resolved images accompanied 
by the true and estimated blur kernels. The image PSNR and kernel 

SSD are calculated and provided for quantitative evaluation. The pro-
posed Blind-ANR has achieved the best performance in terms of the 
PSNR value in this example, however, whose estimated blur kernel 
does not most resemble the ground truth in terms of the SSD value. 
Blind super-resolved images can be observed on the computer screen 
for better visual comparison
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where (�(i−1), �) ≜ �T
x
(�(i−1)) ⋅��(�x) + �T

y
(�(i−1)) ⋅��(�y). 

Applying the augmented Lagrangian scheme, we get an 
unconstrained form of (14) and obtain the iterative estimates 
of �(i), �(i) , i.e.,

where 1 ≤ l ≤ L = 10, �x = �y = � is the augmented Lagran-
gian penalty parameter set as 100 in implementation, and 
�
(i−1)

0
= �, �(i−1)

0
= �(i−1), �(i−1)

L
= �(i), �

(i−1)

L
= �(i). As for the 

Lagrange multipliers �l
x
, �l

y
 , they are initialized as � and 

updated according to the rules

Minimizing (15) with respect to � , the intermediate high-
res image �(i−1)

l
 can be computed as the solution to the fol-

lowing equation

which is solved using the conjugate gradient (CG) algorithm 
for running efficiency. In the CG, the error tolerance and the 
maximum number of iterations are, respectively, set as 1e−5 
and 15. In implementation, the fast Fourier transform is also 
exploited to computations involving �(i−1),�x,�y and their 
transposes for further acceleration.

Given the estimate �(i−1)
l

 , the auxiliary variable �(i−1)
l

 is 
then updated by minimizing the following functional

which can be efficiently solved in a pixel-by-pixel manner, 
i.e.,

where p ∈ �(u), and ro, u
(i−1)

l
, �l−1

o
, u(i−1) are easily 

obtained by reshaping the vectors �o, �
(i−1)

l
, �l−1

o
, �(i−1) into 

matrices. Apparently, it now only needs solving a root-finder 

(15)
�
(i−1)

l
, �

(i−1)

l
= argmin

�,�

𝜂

2

‖‖‖� − ��(i−1)�
‖‖‖
2

2
+ 𝜆(�(i−1), �) +

𝛽

2

‖‖‖‖
⌣

� −�(i−1)�
‖‖‖‖

2

2

+ �
l−1
x

⋅ (�x� − �x) +
𝜁x

2
‖‖�x� − �x

‖‖
2

2
+ �

l−1
y

⋅ (�y� − �y) +
𝜁y

2

‖‖‖�y� − �y
‖‖‖
2

2
,

(16)
�
l
x
= �

l−1
x

+ �

(
�x�

(i−1)

l
− (�x)

(i−1)

l

)
,

�
l
y
= �

l−1
y

+ �

(
�y�

(i−1)

l
− (�y)

(i−1)

l

)
.

(17)

(
𝜂(��(i−1))T��(i−1) + 𝛽(�(i−1))T�(i−1) + 𝜁

(
�T
x
�x + �T

y
�y

))
�

= 𝜂(��(i−1))T� + 𝛽(�(i−1))T
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x

(
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(
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𝜁
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,

(18)
�
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∇x�

(i−1)

l
− �x +

�
l−1
x

�

‖‖‖‖

2

2

+
�

2

‖‖‖‖
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l−1
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�

‖‖‖‖

2

2
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x
(�(i−1)) ⋅��(�x) + ��T

y
(�(i−1)) ⋅��(�y),

(19)

�

2

(
(ro)p −

(
�ou

(i−1)

l
+

�l−1
o

�

)

p

)2

+ ��o

(
u(i−1)
p

)
⋅

|||(ro)p
|||
�

,

problem for a general 0 < 𝛼 ≤ 1, i.e., minv
�

2
(w − v)2 + (v)� . 

It is lucky that we may borrow the numerical idea in [62] for 
the minimization problem. As for � = 1, 1∕2, 2∕3 , analytical 
solutions can be used as calculated by Algorithms 2 and 3 

in [62]; as for other values of � , the numerical root-finder 
approach Newton–Raphson can be exploited. In this paper, 
� = 1 is found to be a proper choice to the adaptive heavy-
tailed priors for nonparametric blind SR, while � = 1∕2 is a 
more appropriate candidate for the special blind deblurring 
problem. More details are to be provided in the experimental 
part in Sect. 4.

3.2  Updating the Nonparametric Blur Kernel

Turning to estimating the blur kernel �(i) given the produced 
image �(i) , our empirical experimentation suggests that the 
kernel update step can be better performed as implemented 
in the image derivative domain. Note that this has been also 
validated in [50] and several blind image deblurring works 
such as [51, 69, 71]. Therefore, (12) is modified as

where �o = �o�, 
⌣

�o = �o

⌣

�,�(i)
o

 denotes the convolutional 
matrix corresponding to the image gradient �(i)

o
= �o�

(i). 
Besides, �(i) should be projected onto the constraint set 
 = {� ≥ 0, ||�||1 = 1} because a blur kernel is nonnega-
tive and normalized.

Notice that (20) is a non-convex minimization problem 
due to the L0.5-norm-based regularization imposed on the 
blur kernel k. We still build on the ADMM method and 
derive an iterative numerical algorithm for solving (20), just 
similar to the one in Sect. 3.1. Let z be an auxiliary variable 
used to replace � in the regularization term, and we obtain

(20)

�(i) = argmin
�

�

o∈{x,y}

�
𝜂
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����o − ��(i)
o
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���
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(21)

�(i), �(i) = argmin
�,�

�

o∈{x,y}
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, s.t. � = �.
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Then, the augmented Lagrangian scheme to (21) can be 
given for the iterative estimates of �(i), �(i) , i.e.,

where 1 ≤ j ≤ J = 10, the augmented Lagrangian penalty 
parameter �k is set as 1e6 in implementation, and �(i−1)

0
= �, 

�
(i−1)

0
= �(i−1),�

(i−1)

J
= �(i), �

(i−1)

J
= �(i). Besides, the Lagrange 

multiplier �j

k
 is initialized as � and updated by the rule

Obviously, as for �(i−1)
j

 it can be easily calculated by solving 
the following equation

where � is the identity matrix. Because of the down-sampling 
matrix � involved in (24), the CG method is also used whose 
error tolerance and maximum iteration number are set the 
same as those for (17). Additionally, the fast Fourier trans-
form is harnessed to computations involving {�(i)

o
} and their 

transposes for running efficiency.
However, given the estimate �(i−1)

j
 , the auxiliary variable 

�
(i−1)

j
 can be easily updated by minimizing the functional

(22)
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because it has an analytical solution as being demonstrated 
in [62], just similar to (18).

3.3  Multi‑scale Implementation

Following the regular practice in blind image deblurring, a 
multi-scale strategy is exploited for the final algorithm so 
as to make our approach applicable to large-scale blur ker-
nel estimation and also avoid getting stuck into poor local 
minima when solving (11) and (20). The pseudocode of the 
final algorithm is summarized as Algorithm 1. In each scale, 
the low-res image � and the super-resolved blurry image ⌣� 
generated by ANR are 2 times down-sampled successively 
as inputs to (11) and (20). In the finest scale the inputs are 
the original g and ⌣� themselves. The initialized image for 
each scale is set as the down-sampled ⌣� , and the initialized 
kernel is set as the bicubic up-sampled blur kernel estimated 
in the coarser scale (in the coarsest scale the initial kernel 
is simply set as the Dirac pulse). Furthermore, inspired by 
the blind deblurring literature the continuation scheme is 
applied on the parameters �, � for better performance.

It is obvious that the main computational cost of the pro-
posed approach is on the iterative estimates of �(i−1)

l
, �

(i−1)

j
 , 

which are based on the CG algorithm due to the involved 
down-sampling operator in the low-res imaging model. As 
proposed adaptive heavy-tailed priors (1) are applied to the 
degenerated blind deblurring problem to be validated in 
Sect. 4, �(i−1)

l
, �

(i−1)

j
 can be completely solved via the fast 

Fourier transform and the finally derived algorithm is to be 
more efficient. It should be noted that several recent works 
such as [74, 75] are specifically proposed for fast non-blind 
super-resolution, which aim to explicitly deal with the down-
sampling matrix D and may be studied for our blind purpose 
in the future.
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1 In [48] blur kernels are typically solved with size 9 × 9, 11 × 11 or 
13 × 13 for various blind SR problems.

4  Experimental Results and Analysis

4.1  Super‑Resolving Synthetic Blurred Low‑Res 
Images

This subsection validates the benefit of our method using 
synthetic blurred low-res images, along with comparisons 
against two recent state-of-the-art nonparametric blind SR 
approaches reported in [48, 50]. To be noted that the esti-
mated blur kernels corresponding to [48] were prepared by 
Dr. Tomer Michaeli who is the first author of [48]. The same 
TV-based non-blind SR method [41] is used for restoring 
the final high-res image. Considering the fact that the work 
in [48] loses its stability for large kernels,1 we restrict the 
size of unknown kernels to 19 × 19 universally across all the 
experiments in the following. Besides, both the bi-L0–L2-
norm-based blind SR method [50] and our approach in 
Algorithm 1 choose ANR [24] for obtaining the non-blind 
super-resolved image ⌣� . To quantify the performance of 

different blur kernel estimation methods, values of PSNR 
and SSIM corresponding to each of the final super-resolved 
images are computed. All the experiments are performed 
using MATLAB v7.0 on a laptop computer with an Intel 
i7-6700HQ CPU (2.60 GHz) and 12 GB. As for the param-
eter settings of the proposed method, �, �, � are specified to 
be 0.01, 0.25 and 100, respectively. Another parameter to 
be specified is the balance coefficient � in proposed heavy-
tailed image priors (1), which is found to matter a lot to the 
estimation accuracy and in this paper is fixed as 0.1. For 
the sake of description clarity, in the following the work in 
[48] is named Patch Recurrency and that in [50] is named 
bi-L0–L2-norm.

In the first group of synthetic experiments, each of the 
thirty test images from the Berkeley Segmentation Dataset 
as shown in Fig. 3 is blurred by a 11 × 11 Gaussian kernel 
with standard deviation 2.5, down-sampled with a factor 
3 and degraded by a zero-mean white Gaussian noise with 
noise level 1. The blur kernel SSD, image PSNR and image 
SSIM corresponding to each of compared methods are pro-
vided in Table 1. We see that in this scenario the proposed 
approach has achieved comparable performance to [50] in 
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terms of either kernel SSD or image SSIM and PSNR. It is 
also noticed that the Patch Recurrency method by Michaeli 
and Irani [48] cannot generate state-of-the-art results in spite 
of their fresh ideas. For visual perception, the super-resolved 
images are provided in Figs. 4, 5 and 6 corresponding to 
images with Nos. 10, 13 and 15, respectively, where the 
intermediate images produced by the proposed method are 
also shown. Clearly, it is observed that the estimated blur 
kernels by [50] and the proposed method are more accurate 
than those by [48], which actually fails on the image with 
No. 15 as shown in Fig. 6.

In the second group of experiments, ten high-res images 
are used to produce blurred low-res images for validating 
the performance of the proposed approach. Ten synthetic 
non-Gaussian blur kernels are generated by sampling with a 
Gaussian process as detailed in [77], all of which are speci-
fied to the same size 11 × 11. Each high-res image is down-
sampled with a factor 2 or 3 after the blurring process. Here 
we just compare [50] and the proposed approach with the 
super-resolved images shown in Figs. 7, 8, 9, 10, 11, 12, 13, 
14, 15 and 16. The values of image PSNR and SSIM are 
summarized in Table 2. We note that our proposed approach 
achieves comparatively better performance particularly in 
terms of image PSNR. The visual perception from the super-
resolved images also demonstrates the superiority of the 
proposed method to some extent. In fact, the advantage of 
the new adaptive heavy-tailed priors over the bi-L0–L2-norm 

regularization is indeed more obvious in scenarios of motion 
blur, which is to be demonstrated in Sect. 4.3.

The last group of experiments is to demonstrate the influ-
ence of the balance coefficient � on the performance of 
proposed adaptive priors (1), which is found to work well 
as fixed to be 0.1. In Figs. 17 and 18, the super-resolved 
images are provided corresponding to different settings 
of � for two motion blurred low-res images which are 
down-sampled 2 and 3 times, respectively; the results 
of ANR [24] and bi-L0–L2-norm [50] are also shown for 
comparison. It is observed that in both cases � = 0.1 has 
resulted in higher SSIM and PSNR as well as better visual 
perception as compared against other three settings, i.e., 
� = 0, � = 0.6, � = 1. In the meantime, our method 
achieves comparable performance to bi-L0–L2-norm [50] in 
both blind SR experiments.

4.2  Super‑Resolving Realistic Blurred Low‑Res 
Images

To check the practical performance of various blind SR 
approaches, several experiments are conducted on the real-
world low-res images. Note that the inputs to each blind 
approach are only the low-res image g and the up-sampling 
factor r. The blur kernels corresponding to Patch Recurrency 
[48] and bi-L0–L2-norm [50] are prepared by the authors. In 
order to validate the robustness of the proposed method to 

Fig. 3  Thirty test images from the Berkeley Segmentation Dataset for nonparametric blind SR in the scenario of Gaussian blur
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the parameter settings, they are specified exactly the same as 
those in the synthetic experiments in Sect. 4.1. In addition, 
the size of blur kernels for each method is still set as 19 × 19. 
We also suggest that one should observe the super-resolved 
images provided below on the computer screen for better 
qualitative comparison among different methods.

In Fig. 19, an old photograph is 2 times super-resolved 
with the blur kernel estimated by each blind approach. It 
is clearly observed that there are some ringing artifacts 
along the upper forehead and left shoulder of the young 

soldier in the result of Michaeli and Irani [48], while the 
proposed method and bi-L0–L2-norm [50] perform much 
better without noticeable differences in their super-resolved 
images. In Fig. 20, another old picture is also 2 times super-
resolved with different methods. We see that the non-blind 
approach ANR [24] produces a very blurry image, reflect-
ing the necessity of single-image blind SR techniques. We 
also observe that both our proposed method and bi-L0–L2-
norm [50] generate visually pleasant high-res images and 
also reasonable blur kernels from which it is conjectured 

Table 1  Nonparametric blind 
SR in the scenario of Gaussian 
blur with kernel SSD, image 
SSIM and image PSNR 
provided corresponding to Patch 
Recurrency [48], bi-L0–L2-norm 
[50] and the proposed approach 
(Ours)

Image no. [48] [50] Ours

SSD SSIM PSNR SSD SSIM PSNR SSD SSIM PSNR

1 0.0020 0.9322 33.67 0.0006 0.9521 36.04 0.0004 0.9537 36.20
2 0.0017 0.7644 27.06 0.0003 0.8122 29.17 0.0005 0.8104 29.12
3 0.0020 0.6176 26.24 0.0003 0.6587 27.29 0.0007 0.6550 27.20
4 0.0034 0.8177 31.06 0.0004 0.8558 33.79 0.0003 0.8571 33.78
5 0.0030 0.6276 24.94 0.0001 0.6975 27.60 0.0002 0.6975 27.68
6 0.0062 0.6118 23.86 0.0007 0.6987 26.68 0.0002 0.6975 26.63
7 0.0039 0.6443 24.31 0.0001 0.7023 26.71 0.0004 0.6994 26.63
8 0.0062 0.7259 23.44 0.0001 0.7960 25.45 0.0004 0.7886 25.22
9 0.0097 0.3414 17.73 0.0002 0.5351 21.26 0.0004 0.5283 21.20
10 0.0005 0.7376 28.69 0.0003 0.7408 28.74 0.0002 0.7406 28.74
11 0.0044 0.4911 24.64 0.0002 0.5531 27.20 0.0003 0.5539 27.21
12 0.0061 0.5688 23.09 0.0002 0.6567 26.26 0.0002 0.6570 26.35
13 0.0014 0.7367 29.46 0.0004 0.7605 30.94 0.0002 0.7637 31.11
14 0.0014 0.4227 23.70 0.0001 0.4364 24.29 0.0003 0.4347 24.27
15 0.0027 0.7494 28.09 0.0003 0.7819 29.51 0.0001 0.7840 29.63
16 0.0016 0.8676 27.45 0.0007 0.9060 29.77 0.0002 0.9050 29.70
17 0.0016 0.7686 28.97 0.0003 0.7872 29.80 0.0003 0.7874 29.71
18 0.0033 0.8557 28.44 0.0001 0.9105 34.27 0.0001 0.9102 34.33
19 0.0036 0.5815 24.49 0.0003 0.6542 28.24 0.0002 0.6551 28.23
20 0.0026 0.4351 21.74 0.0001 0.4745 22.62 0.0006 0.4668 22.57
21 0.0048 0.5154 20.67 0.0003 0.5347 21.01 0.0005 0.5336 21.00
22 0.0032 0.7041 24.89 0.0001 0.7266 25.60 0.0003 0.7226 25.49
23 0.0044 0.4608 22.86 0.0001 0.5324 24.99 0.0003 0.5304 24.96
24 0.0014 0.6364 26.67 0.0001 0.6607 27.54 0.0002 0.6588 27.52
25 0.0084 0.6586 26.84 0.0002 0.7300 29.73 0.0003 0.7300 29.70
26 0.0041 0.4487 24.44 0.0001 0.5267 27.39 0.0003 0.5236 27.33
27 0.0015 0.5619 24.95 0.0017 0.5853 24.88 0.0002 0.5848 25.22
28 0.0034 0.5965 27.24 0.0001 0.6560 28.86 0.0002 0.6548 28.85
29 0.0039 0.6164 24.31 0.0001 0.6934 26.13 0.0003 0.6920 26.07
30 0.0036 0.5771 23.73 0.0002 0.6638 25.83 0.0003 0.6610 25.79
Average 0.0035 0.6358 25.59 0.0003 0.6893 27.59 0.0003 0.6879 27.58
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that the low-res image had undergone a camera shake blur. 
In the meanwhile, it is seen that the super-resolved image 
by the Patch Recurrency approach [48] is very similar to 
those by the other two algorithms, but a careful inspection 

tells that the true blur kernel should not have a support 
as large as that estimated by [48]. In Fig. 21, an iPhone 
picture is 3 times super-resolved, and the result image by 
ANR [24] is apparently much blur as compared with the 

Fig. 4  Super-resolved images along with values of SSIM and PSNR by ANR [24] (0.7025, 26.87  dB), Patch Recurrency [48] (0.7372, 
28.66 dB), bi-L0–L2-norm [50] (0.7408, 28.74 dB) and our approach (0.7406, 28.74 dB)

Fig. 5  Super-resolved images along with values of SSIM and PSNR by ANR [24] (0.7025, 27.93  dB), Patch Recurrency [48] (0.7359, 
29.42 dB), bi-L0–L2-norm [50] (0.7605, 30.94 dB) and our approach (0.7637, 31.11 dB)
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Fig. 6  Super-resolved images 
along with values of SSIM and 
PSNR by ANR [24] (0.7090, 
26.68 dB), Patch Recurrency 
[48] (0.7490, 28.06 dB), 
bi-L0–L2-norm [50] (0.7819, 
29.51 dB) and our approach 
(0.7840, 29.63 dB)

Fig. 7  Super-resolved images (2 
times up-sampled) along with 
values of SSIM and PSNR by 
ANR [24] (0.8653, 20.17 dB), 
bi-L0–L2-norm [50] (0.9698, 
29.24 dB) and our approach 
(0.9629, 29.63 dB)
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Fig. 8  Super-resolved images (2 times up-sampled) along with values of SSIM and PSNR by ANR [24] (0.8820, 28.54 dB), bi-L0–L2-norm [50] 
(0.9334, 34.24 dB) and our approach (0.9455, 35.73 dB)

Fig. 9  Super-resolved images (2 times up-sampled) along with values of SSIM and PSNR by ANR [24] (0.8820, 28.54 dB), bi-L0–L2-norm [50] 
(0.9334, 34.24 dB) and our approach (0.9455, 35.73 dB)

Fig. 10  Super-resolved images 
(2 times up-sampled) along with 
values of SSIM and PSNR by 
ANR [24] (0.5722, 20.55 dB), 
bi-L0–L2-norm [50] (0.8019, 
28.17 dB) and our approach 
(0.8746, 30.27 dB)

Fig. 11  Super-resolved images (2 times up-sampled) along with values of SSIM and PSNR by ANR [24] (0.7542, 31.21 dB), bi-L0–L2-norm 
[50] (0.7761, 31.84 dB) and our approach (0.7981, 33.00 dB)
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results by the three nonparametric blind methods. Observ-
ing the estimated kernels we see that the orientation of the 
kernel by bi-L0–L2-norm [50] resembles a lot that of the 
kernel by our method, while our kernel support is more 
accurate because one may inspect that our super-resolved 
image is visually clearer. Besides, it is noticed the sup-
port of the kernel by Patch Recurrency [48] resembles that 
of the kernel by our approach, but our kernel orientation 
seems more accurate because of the slightly better visual 

perception on our super-resolved image. In fact, the supe-
riority of the proposed approach to Patch Recurrency [48] 
and bi-L0–L2-norm [50] is shown more obviously in Fig. 22, 
where the Patch Recurrency method [48] has completely 
failed to infer an acceptable blur kernel which leads to a 
super-resolved image full of ringing and staircase artifacts. 
As for the bi-L0–L2-norm method [50], noticeable ringing 
artifacts exist in the final super-resolved image due to its 
inaccurate kernel whose support errors are clearly visible 

Fig. 12  Super-resolved images (3 times up-sampled) along with values of SSIM and PSNR by ANR [24] (0.7032, 24.28 dB), bi-L0–L2-norm 
[50] (0.7837, 26.14 dB) and our approach (0.7844, 26.20 dB)

Fig. 13  Super-resolved images (3 times up-sampled) along with values of SSIM and PSNR by ANR [24] (0.4635, 24.48 dB), bi-L0–L2-norm 
[50] (0.6631, 27.34 dB) and our approach (0.6628, 27.45 dB)

Fig. 14  Super-resolved images (3 times up-sampled) along with values of SSIM and PSNR by ANR [24] (0.9697, 34.84 dB), bi-L0–L2-norm 
[50] (0.9772, 37.53 dB) and our approach (0.9803, 38.31 dB)
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to the human eyes. Comparatively, the proposed approach 
achieves the best visual performance in this example. 
Another low-res image with recurrent patches across scales 
provided in [48] is also shown in Fig. 23 for comparison. 
We see that the super-resolved images according to the three 
blind SR methods are visually almost the same despite that 
the estimated kernel by our approach is not as accurate as 
those by Patch Recurrency [48] and bi-L0–L2-norm [50]. 
The last group of experiments is performed on an alphabet 
table image, and the corresponding super-resolved images 
are provided in Fig. 24, from which it is observed that the 
proposed method achieves the best restoration quality. That 
is because there exist some ringing artifacts in the image 
corresponding to the Patch Recurrency approach [48] due 
to the overestimated support of the blur kernel, while the 
super-resolved image corresponding to bi-L0–L2-norm [50] 
is somewhat blurry due to the underestimated support of 
the blur kernel.

Fig. 15  Super-resolved images (3 times up-sampled) along with values of SSIM and PSNR by ANR [24] (0.8084, 26.36 dB), bi-L0–L2-norm 
[50] (0.8805, 31.00 dB) and our approach (0.8858, 31.05 dB)

Fig. 16  Super-resolved images (3 times up-sampled) along with values of SSIM and PSNR by ANR [24] (0.5059, 24.34 dB), bi-L0–L2-norm 
[50] (0.5666, 25.83 dB) and our approach (0.5665, 25.94 dB)

Table 2  Nonparametric blind SR in the scenario of non-Gaussian 
blur with image SSIM and PSNR provided corresponding to the 
compared methods including bi-L0–L2-norm [50] and the proposed 
approach (Ours)

Image no. [50] Ours

SSIM PSNR SSIM PSNR

1 0.9698 29.24 0.9629 29.63
2 0.9334 34.24 0.9455 35.73
3 0.8949 31.42 0.9226 33.48
4 0.8019 28.17 0.8746 30.27
5 0.7761 31.84 0.7981 33.00
6 0.7837 26.14 0.7844 26.20
7 0.6631 27.34 0.6628 27.45
8 0.9772 37.53 0.9803 38.31
9 0.8805 31.00 0.8858 31.05
10 0.5666 25.83 0.5665 25.94
Average 0.8277 30.28 0.8383 31.11
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4.3  Applicability to Blind Image Deblurring

This subsection validates the applicability of the proposed 
adaptive heavy-tailed priors to nonparametric blind image 
deblurring. We note that the property of Patch Recurrency 

across scales in natural images has been also exploited for 
blind deblurring in [49], and the bi-L0–L2-norm regulariza-
tion was originally proposed in [51] for blind deblurring, 
too. To make it clear, we formulate the spatially invariant 
blind deblurring problem into the following functional

Fig. 17  Super-resolved images (2 times up-sampled) along with val-
ues of SSIM and PSNR by ANR [24] (0.7156, 23.81 dB), bi-L0–L2-
norm [50] (0.8535, 28.10  dB) and our proposed approach (0.8555, 

28.14 dB). The second row shows results of the proposed approach 
provided three other balance coefficients: 0 (0.7922, 24.51  dB), 0.6 
(0.8518, 27.94 dB), 1 (0.8483, 27.83 dB)

Fig. 18  Super-resolved images (3 times up-sampled) along with val-
ues of SSIM and PSNR by ANR [24] (0.7156, 23.81 dB), bi-L0–L2-
norm [50] (0.8535, 28.10  dB) and our proposed approach (0.8555, 

28.14 dB). The second row shows results of the proposed approach 
provided three other balance coefficients: 0 (0.7922, 24.51  dB), 0.6 
(0.8518, 27.94 dB), 1 (0.8483, 27.83 dB)
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Fig. 19  Blind super-resolution (2 times) by ANR [24], Patch Recurrency [48], bi-L0–L2-norm [50] and the proposed approach

Fig. 20  Blind super-resolution (2 times) by ANR [24], Patch Recurrency [48], bi-L0–L2-norm [50] and the proposed approach

Fig. 21  Blind super-resolution (3 times) by ANR [24], Patch Recurrency [48], bi-L0–L2-norm [50] and the proposed approach
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where (��) is the proposed heavy-tailed image priors in 
(1). Given the blurry image � , the core task is to estimate the 
blur kernel �̂ with which the final deblurred image can be 
obtained via the use of an existing non-blind deconvolution 

(26)�̂, �̂ = argmin
�,�

𝜂

2
‖� −��‖2

2
+ 𝜆(��) + ‖�‖2

2
,

method. Here we would like to emphasize the settings of 
the two parameters in adaptive heavy-tailed priors (1), i.e., 
the power coefficient � and the balance coefficient � . It is 
empirically found that � can be fixed as 0.1 which is the 
same value as the one for Sects. 4.1 and 4.2, while � = 0.5 
works better in a great many blind deblurring problems.

Fig. 22  Blind super-resolution (4 times) by ANR [24], Patch Recurrency [48], bi-L0–L2-norm [50] and the proposed approach

Fig. 23  Blind super-resolution (3 times) by ANR [24], Patch Recurrency [48], bi-L0–L2-norm [50] and the proposed approach

Fig. 24  Blind super-resolution 
(2 times) by ANR [24], Patch 
Recurrency [48], bi-L0–L2-norm 
[50] and the proposed approach
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In the following, several real-world blind deblurring 
experiments are performed with comparisons made among 
the three blind deblurring methods including [49, 51] and 
Ours. Note that for the sake of fairness, the estimated kernels 
corresponding to each method are produced under a fixed 
group of parameter settings; as for non-blind deconvolution, 
[49] and Ours harness the approach suggested in [56], while 
[51] exploit the one in [62] which is found to suit [51] bet-
ter. In each experiment, the intermediate sharp image, esti-
mated blur kernel and final deblurred image are shown for 
both [51] and our proposed method, while the intermediate 
image corresponding to [49] cannot be provided since the 
codes are encapsulated. In Figs. 25 and 26, it is observed 
that all the three blind approaches have succeeded in esti-
mating the correct motion trajectories, and those of [51] and 
our approach are slightly more accurate than that of [49] 
in Fig. 25 because there are some blur and color artifacts 
in its final deblurred images. Meanwhile, we see that the 

intermediate images of our approach are somewhat cartoon-
like ones, i.e., the fine details/textures in the clear images are 
removed during the blur kernel estimation, which validate 
the importance and necessity of the additional generalized 
RTV in proposed priors (1).

In Fig. 27, it is observed that the proposed method has 
generated a fairly more accurate blur kernel than the other 
two methods, whose final deblurred image is apparently of 
much better visual quality, while there are some blurring 
and ringing artifacts in that of [49, 51], respectively. Addi-
tionally, three text images with multi-scale roof edges are 
tested in Figs. 28, 29 and 30, observing from which it is 
found that [49, 51] have completely failed to get a plausible 
motion trajectory. In spite of that, our approach has achieved 
impressive performance since its intermediate sharp image, 
estimated blur kernel and final deblurred image all meet well 
our expectations.

Fig. 25  Blind deblurring using 
different models including Patch 
Recurrency [49], bi-L0–L2-norm 
[51] and our adaptive heavy-
tailed priors. The kernel size is 
set as 99 × 99
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In the following, we would like to show more benefits of 
the proposed priors for blind deblurring, especially in terms 
of algorithmic efficiency. Suggested by one of the review-
ers, a fair comparison is made among our priors and those 
in [54, 56]. It should be noted that we totally follow the 
numerical scheme of [54, 56] and derive a similar algorithm 
to Algorithm 1 for (26), including the tricks of multi-scale 
implementation, kernel estimation in the derivative (gradi-
ent) domain and continuation strategy applied to the param-
eter � . Due to the absence of D in (26) and the simplicity of 
the L2-norm regularization on the kernel k, the alternating 
iterative computations of u and k can be made more efficient 
without the use of the CG as Algorithm 1 for blind super-
resolution. Note that the number of outer alternating itera-
tions for updating u and k in [54, 56] is set uniformly as 5, 
which is set the same in our blind deblurring algorithm. As 

for the inner updating of u, our algorithm obviously requires 
less iterations than those in [54, 56] since the gradient and 
intensity components in the priors of [54, 56] have to be 
minimized in a manner of nested iteration for ensuring accu-
rate blur kernel estimation. For clarity, the core trick of our 
algorithm is to replace �� in (��) with another substitute 
variable like z; thus, minimization over u is easily simplified 
and z can be estimated with a thresholding-style computing 
scheme as in Algorithm 1.

With the same blurred images in Figs. 25, 26, 27, 28, 29 
and 30, we additionally provide another group of experi-
mental results corresponding to the proposed method [54, 
56]. The final deblurred images accompanied with their 
intermediate sharp ones as well as estimated blur kernels 
as provided in Figs. 31, 32, 33, 34, 35 and 36. The running 
time of every approach on each deblurred image is given in 

Fig. 26  Blind deblurring using 
different models including Patch 
Recurrency [49], bi-L0–L2-norm 
[51] and our adaptive heavy-
tailed priors. The kernel size is 
set as 35 × 35
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Table 3. Note that, all the experiments are performed on the 
same platform as clarified previously.

On the one hand, we observe that most of deblurred 
images and estimated blur kernels corresponding to the 
three priors are visually similar to each other. An excep-
tion example is the calligraphic work in Fig. 36, where our 
method apparently produces a more natural deblurred image 
than [54, 56]. (The differences can be observed clearly on 
the computer screen.) In spite of that, most of intermediate 
sharp images corresponding to our priors are slightly dif-
ferent from those corresponding to the priors in [54, 56]. A 
careful inspection tells that our approach is not only capable 
of erasing more fine details but also able to avoid false edges, 

making the intermediate sharp images more appropriate for 
accurate blur kernel estimation. As a matter of fact, annoying 
fine textures and details as well as false edges are considered 
harmful to the accuracy of blur kernel estimation, which has 

Fig. 27  Blind deblurring using different models including Patch 
Recurrency [49], bi-L0–L2-norm [51] and our adaptive heavy-tailed 
priors. The kernel size is set as 95 × 95

Fig. 28  Blind deblurring using different models including Patch 
Recurrency [49], bi-L0–L2-norm [51] and our adaptive heavy-tailed 
priors. The kernel size is set as 65 × 65
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been empirically validated in the existing blind deblurring 
literature, e.g., [69–71]. The calligraphic work in Fig. 36 is 
such an example. On the other hand, according to Table 3 

we find that the proposed method is the most efficient one 
among the three compared algorithms. Specifically, our 
method is approximately 2 times faster than [56] and more 
than 10 times faster than [54]. Note that the comparison 
on efficiency of different methods here is fair enough and, 
hence, the proposed image priors are more appropriate for 
the computationally demanding blind super-resolution prob-
lem due to the involvement of the down-sampling matrix 
D. It is believed that the above explanation verifies what 
we describe in the introduction part of the paper: However, 
nonparametric blind SR with an image prior in either [56] 
or [54] will bear a much high computational burden, and 
hence in terms of the numerical efficiency, neither Pan et al. 
[54] nor Pan et al. [56] is a feasible and effective candidate 
to blind SR. As for algorithmic schemes along the lines of 
plug-and-play priors, we indeed derive a plug-and-play-
based algorithm with the proposed prior for blind deblur-
ring. Simply speaking, we replace u instead of �� in (��) 
with another substitute variable like v. Thus, minimization 
over u is also very efficient. However, it is not the case for v 
although its estimation is actually transformed to a filtering/
denoising problem with the proposed prior (�) . We take 
the blurred image in Fig. 25 for example. Such a plug-and-
play-based algorithm runs about 332 s which is much longer 

Fig. 29  Blind deblurring using different models including Patch 
Recurrency [49], bi-L0–L2-norm [51] and our adaptive heavy-tailed 
priors. The kernel size is set as 55 × 55

Fig. 30  Blind deblurring using 
different models including Patch 
Recurrency [49], bi-L0–L2-norm 
[51] and our adaptive heavy-
tailed priors. The kernel size is 
set as 85 × 85
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than 112 s as shown in Table 3, although visually similar 
deblurred images are obtained. As for the existing plug-and-
play priors with BM3D [76] or recent versions using denois-
ing networks [97], they are not objected specifically to blind 
deblurring and there are no relevant blind deblurring results 
reported in the literature, either. Actually, it is common in 
the literature to use plug-and-play priors for non-blind res-
toration problems [74].

4.4  Discussions

Though non-blind SISR has achieved fast development 
by use of CNN-based models as reviewed in Sect. 1, it is 
not the case for nonparametric blind SR problems. In fact, 
since the deep architectures for non-blind super-resolution 

[27–37] and blind image deblurring [77, 90–92] are gen-
erally rather different, there are few works addressing 
nonparametric blind super-resolution for generic natural 
images. Besides [90–92], two recent works [93, 94] on 
class-specific blind super-resolution are proposed, which 
focus on the task of blurred face hallucination. However, 
they do not apply to generic natural images. For example, 
in [94] the authors make a comment on their blind method 
as the following: When trained on multi-class images, the 
proposed model is designed to approximate the mixture 
distribution of the multi-class images. When this mixture 
distribution becomes too complex, it is difficult to learn a 
unified model for the diversity of all image classes. Thus, 
our method is less effective for generic images.

Indeed, more efforts should be made on deep learning-
based nonparametric blind super-resolution of generic 

Fig. 31  Comparison of blind 
deblurring among state-of-the-
art image priors in [54, 56] and 
our adaptive heavy-tailed priors. 
The kernel size is set as 99 × 99
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natural images. However, in the current it is really difficult 
for us to show at which point the variational approaches 
for nonparametric blind super-resolution start to dominate 
the deep learning-based approaches. In fact, we believe the 
combination of variational and learning-based methods is 
a more promising direction for both blind super-resolution 
and blind deblurring.

Lastly, as suggested by one of the reviewers we have 
performed an additional group of experiments on the 
realistic blurry low-res image in Fig. 22, where the pro-
posed blind deblurring method in Sect. 4.3 and the dark 
channel-based blind deblurring method in [54] are first of 
all utilized to get a deblurred low-res image, and then the 

state-of-the-art CNN-based super-resolution algorithm [37] 
is used to generate the final high-res image. We also provide 
the super-resolution result by direct use of [37] without a 
step of deblurring. The experimental results are provided 
in Fig. 37. It is clear that the super-resolved image by Algo-
rithm 1 achieves the best visual quality, while many ringing/
distortion artifacts can be observed in the resultant images 
obtained by a combination of deblurring ([54]/Ours) and 
CNN-based SR [37]. As we use [37] alone on the blurry 
low-res image, the super-resolved image is not satisfactory, 
either, due to the blur artifact just similar to the case of 
using ANR [24] alone.

Fig. 32  Comparison of blind 
deblurring among state-of-the-
art image priors in [54, 56] and 
our adaptive heavy-tailed priors. 
The kernel size is set as 35 × 35
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5  Conclusion

This paper works toward a novel model and fast algorithm 
for single-image nonparametric blind super-resolution. In 
specific, a type of adaptive heavy-tailed image priors is 
introduced incorporating both the model discriminative-
ness and effectiveness of salient edge pursuit for accurate 
and reliable blur kernel estimation. With the assistance of 
proper non-blind SR approaches, e.g., anchored neighbor-
hood regression, nonparametric blind super-resolution 
can be cast as a new regularized functional minimization 
problem. An efficient numerical algorithm is derived by 
harnessing the fast Fourier transform as well as the conju-
gate gradient method, with which the alternating iterative 
estimations of kernel and image are lastly implemented in a 

Fig. 33  Comparison of blind deblurring among state-of-the-art image 
priors in [54, 56] and our adaptive heavy-tailed priors. The kernel 
size is set as 95 × 95

Fig. 34  Comparison of blind deblurring among state-of-the-art image 
priors in [54, 56] and our adaptive heavy-tailed priors. The kernel 
size is set as 65 × 65

Fig. 35  Comparison of blind deblurring among state-of-the-art image 
priors in [54, 56] and our adaptive heavy-tailed priors. The kernel 
size is set as 55 × 55
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multi-scale manner. Numerous experiments are performed 
with the comparisons made among the proposed approach 
and two recent state-of-the-art ones, i.e., [48, 50], dem-
onstrating that ours is capable of better dealing with low-
res images which are probably blurred by various kernels, 
such as Gaussian-shaped kernels of varying sizes, ellipse-
shaped kernels of varying orientations, curvilinear kernels 
of varying trajectories. As the down-sampling operator is 

not involved, the proposed algorithmic framework for blind 
super-resolution is demonstrated quite applicable to the 
blind image deblurring problem, and experimental results 
show that the proposed priors achieve more robust deblur-
ring performance than [49, 51] particularly in that the pri-
ors not only fit the natural images with multi-scale step 
edges but also the text images with multi-scale roof edges. 
Lastly, it is noted that the proposed priors for nonparamet-
ric blind super-resolution and deblurring are objected to 
generic images. We do nothing tailored for the text images 
either in the design of images priors or in the derivation of 
numerical scheme. The robust performance of the proposed 
priors is mainly due to the double principles of discrimi-
nativeness as explained in the paper. We should also point 
out that the non-convexity of gradient penalties cannot 
ensure the success of blind deconvolution of text images 
with black and white edges. That is why the L0-norm-based 
regularization in both intensity and gradient domains is 
specifically proposed in [56] for text deblurring and then 
extended in [54] for generic image deblurring. Compara-
tively, our method is different from [54, 56] while more 
efficient than them.

Fig. 36  Comparison of blind 
deblurring among state-of-the-
art image priors in [54, 56] and 
our adaptive heavy-tailed priors. 
The kernel size is set as 85 × 85

Table 3  Running time of blind deblurring with the proposed heavy-
tailed image priors and state-of-the-art priors in [54, 56]

Figures Image resolution Running time (s)

[54] [56] Ours

31 455 × 668 1460 232 112
32 494 × 701 1058 176 90
33 966 × 972 3887 688 277
34 572 × 421 1022 164 78
35 346 × 702 892 149 74
36 288 × 596 908 126 63
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