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Blind image deconvolution is a fundamental task in image processing, computational imaging, and com-
puter vision. It has earned intensive attention in the past decade since the seminal work of Fergus et al.
[1] for camera shake removal. In spite of the recent great progress in this field, this paper aims to formu-
late the blind problem with a simpler modeling perspective. What is more important, the newly proposed
approach is expected to achieve comparable or even better performance towards the real blurred images.
Specifically, the core critical idea is the proposal of a pure gradient-based discriminative prior for accurate
and robust blur kernel estimation. Numerous experimental results on both the benchmark datasets and
real-world blurred images in various imaging scenarios, e.g., natural, manmade, low-illumination, text, or
people, demonstrate well the effectiveness and robustness of the proposed approach.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Blind image deconvolution, a.k.a. blind deblurring, is a funda-
mental problem in image processing, computational imaging, and
computer vision. It has earned intensive attention in the past dec-
ade since the seminal work of Fergus et al. [1] for camera shake
removal.

Among multiple algorithmic ingredients of blind deblurring, it
is universally acknowledged that the unnatural image priors [27]
are playing the dominant role in the success of reasonable blur ker-
nel estimation. To bring out the proposed approach in a smooth
way, representative image priors specifically proposed for blind
deblurring are summarized in this section.

According to the literature review, blind deblurring can be
divided into three categories of methodologies in general, i.e.,
Maximum-a-Posterior (MAP), Variational Bayesian (VB), and Rep-
resentation Learning (RL). In the past several years, the RL particu-
larly the convolutional neural networks (CNN), has been
successfully applied to kinds of imaging and vision tasks. It is dis-
covered, however, that the generalization capability of existing
CNN-based blind approaches [6–14,68,69,70,73] is far from enough
to deal with blurs in different imaging scenarios, e.g., natural, man-
made, low-illumination, text, or people. In comparison, the
gradient-based algorithms formulated in the MAP framework such
as [3,15] are demonstrating greater and greater potentialities in
the practical deblurring tasks. Thus, this paper still follows this
route and tries to further exploit the potential of gradient-based
models. In specific, a simple, robust yet discriminative prior is
introduced for blind deblurring. To be noted that, our discussions
in this paper are limited to the spatially-invariant image deblur-
ring. One consideration is that the performance of previous
advanced non-uniform blind methods such as [16,17] are not com-
petitive at all to those uniform ones, as demonstrated by Lai et al.
[2]. Another consideration is that an image prior for uniform blind
deconvolution can be naively extended to the spatially-variant
problems [3].
1.1. Existing image priors in blind deblurring

For the sake of description clarity, a short review on image pri-
ors proposed and used in blind deconvolution is made in this part.
About twenty years ago, a total variation (TV)-based blind deblur-
ring approach was presented by Chan and Wong [18], being
viewed as the first modern and influential algorithm to the blind
task. However, it is interesting to note that little significant pro-
gress was made since then till the exciting work of Fergus et al.
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[1] about fifteen years ago. It utilizes mixture of Gaussians as the
natural image prior for camera shake removal rather than the TV
model. The inference is made in the VB framework and afterwards
simplified in [19] for better and faster blur removal. As a matter of
fact, an empirical observation in [20] indicates that within the VB
framework the naive Gaussian prior is even qualified for the blind
task [20] to a certain degree. Nonetheless, when exactly the same
image priors as the ones in [1,19] are plugged into the MAP frame-
work (e.g., Gaussian, mixture of Gaussians, fields of experts [21],
failure results are usually produced [1,20] such as the pair of delta
blur kernel and original blurred image. Note that, another naive
MAP approach [22] regularized by the framelet-based natural
image prior is also reported in the risk of similar failure cases.

An intuitive failure cause of those naive MAP methods is that,
the harnessed natural image priors favor a blurred image to its
sharp counterpart. To ensure the success of MAP-based blind
deblurring, kinds of tricks have to be exploited in practice. For
instance, the seminal TV-based method [18] is recently explored
once again in [23], which provides an in-depth analysis on its real
working principle. After ten years of publication of [18], the first
creative trick for boosting it, proposed in [24], is to add shock filter-
ing into TV minimization for better prediction of salient edges as
clues to kernel estimation. Inspired by [24], the shock filtering is
also applied in [25,26] with higher quality blind deblurring results
produced. Actually, as phrased in [27] the natural priors combining
with shock filtering essentially plays a role of implicit unnatural
sparse representation.

Undergone several years of exploration since the exciting work
of Fergus et al. [1] in 2006, unnatural image models have been pre-
dominating the blind deblurring literature until now. On this line,
the first daring try is harnessing the normalized sparsity measure
[4] with the idea that the image prior should favor a sharp image
to its blurry one. Nevertheless, the method can not produce
state-of-the-art performance on this or that benchmark dataset,
let alone blurry images in the wild [2]. The normalized sparsity is
mathematically an approximation of the L0-norm in essence, indi-
cating that the salient edges are more important than the faint tex-
tures for the success of blind image deconvolution. Inspired by the
normalized sparsity measure, a simple yet effective L0-norm-based
blind deblurring approach is subsequently presented in [27].

In literature, two unnatural image models [28,29] using the Lp-
norm are tried, too, wherein the parameter p is set as 0.3 in [28]
and a non-increasing sequence 0.8, 0.8, 0.6, 0.6, 0.6, 0.6, 0.4, . . .,
0.4 along iteration in [29]. The TV-based method [18] is recently
investigated in [30] again which proposes a nonconvex logarithmic
TV prior with improved deblurring performance on some bench-
mark datasets. Moreover, an unnatural iteration-wise hyper-
Laplacian image prior [31] is learned in the MAP framework lead-
ing to better results than existing gradient-based approaches.
Although the learned prior in [31] is claimed to be discriminative,
its generalization performance is questionable to blurry images in
the practical diverse imaging scenarios.

In fact, unnatural image priors are not only requested in the
MAP framework but also advocated in the VB case in spite of its
more robustness in posterior inference. In distinction to [1,19],
recent empirical and theoretical findings both prove that the Jef-
freys’ prior could achieve more accurate blur kernel estimation
[32,33], and this non-informative prior is essentially similar to
the logarithmic TV prior [30] to a large degree. In addition, the
prior is even shown optimal to a certain degree in terms of deblur-
ring quality [33]. Another work by the authors of the present paper
has proposed to determine priors for blind image deblurring as a
self-learning problem [34]. The learned model resembles the
non-informative Jeffreys’ prior in a sense, whose negative-
logarithm is obviously another approximation to the L0-based
model.
Instead of approximating the L0-norm with diverse strategies,
three pure L0-based image priors [27,35,36] are proposed in
2013 for blind deblurring. However, they are found not generalized
well to large-scale blurs especially in specific imaging scenarios,
e.g., face, text, or low-illumination images. In [37], a bi-L0-L2-
norm-based regularization term imposed on both sharp image
and blur kernel is proposed for higher precision of kernel estima-
tion. In [38], a L0-norm-based joint intensity and gradient prior
is presented for the text image deblurring. Furthermore, an
exemplar-driven approach with L0-norm-based gradient regular-
ization is proposed in [39] for the facial image deblurring.

An alternative strategy to formulate blind deblurring is to
explore the patch-based priors [40,41]. In [40], a novel idea of
internal patch recurrence is exploited for the blind problem. While,
in [41] the idea of modeling via external patch querying is pro-
posed for edge-based blur kernel estimation. However, it generally
takes a higher computational cost to query a large external dataset
[3]. Recently, a novel patch-based approach is presented in [42]
harnessing the normalized color-line priors, and shows better per-
formance than [40,41]. To be noted that, the text deblurring
method [38] has been also extended to a patch-based scheme for
handling natural image deblurring [43]. Its core idea is essentially
to exploit the structural sparsity prior, implemented via a couple of
rank penalty terms on similar patches over both the intensity and
gradient domains.

Furthermore, several other methods are proposed to improve
the robustness of blind deblurring to noise [44], outlier [45,46],
and other possible degradations, e.g., light streak [47]. One may
refer to [2,48,63] for a more comprehensive survey on image priors
and other technical components in blind deblurring.

According to above discussions, numerous blind deblurring
algorithms have been reported in the past decade, achieving better
and better performance on one or another synthetic dataset. How-
ever, as empirically concluded in [2], the performance of existing
methods on the benchmark datasets is generally inferior to that
on the real-world blurred images. In other words, existing blind
deblurring algorithms are far from being practical in terms of the
restoration quality.

Actually, a real breakthrough for blind deblurring is just made
recently in [3], which combines the L0-regularized sparsity on both
domains of image gradient and dark channel. The experimental
results demonstrate its superior performance to all the representa-
tive methods in the past decade as studied in [2]. Note that,
although the L0-based dark channel prior (DCP) is discriminative
as desired, the combinatorial L0-regularized model [3] is not nec-
essarily so. That is to say, the composite prior does not necessarily
prefer a sharp image to its blurred counterpart. We note that the
work [3] can be thought of as a smart generalization over [38]
which is not a pure gradient-based approach, either. More recently,
a convolutional neural network (CNN) based classifier is learned in
[71] to distinguish whether an input image is sharp or not, which is
directly plugged into the MAP framework of [3] as a replacement of
the L0-based DCP. In addition, an L0-based bright channel prior
(BCP) is proposed in [15]. The BCP is then combined with the L0-
regularized sparsity on both image gradient and dark channel of
[3], expecting to achievie more robust blur kernel estimation. Note
that, the two successors of [3], i.e., [15,71], are natually with higher
computational burden than [3]. Besides, the composite priors in
[15,71] are not necessarily discriminative as a whole, either.

In this paper, the main motivation is to exploit the full potential
of gradient-based methods, attempting to explore a simple, robust
yet discriminative image prior for blind deblurring. Specifically,
our contributions in this paper are three-fold: Above all, a pure
gradient-based heavy-tailed prior is proposed indicating that the
success of blind image deblurring requires dual principles of dis-
criminativeness (DPD). On the one hand, since this paper formu-
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lates blind deblurring into a model-based minimization problem,
the image prior should be able to discriminate between a sharp
image and its blurry counterpart. On the other hand, a really good
image prior for blind deblurring should be also capable of discrim-
inating between strong edges and faint textures, so as to reduce the
possible interfering effects on blur kernel estimation caused by the
textures. Such an idea is actually a consensus among existing blind
deblurring literature [24–37]. What makes us particularly sur-
prised is that, the above DPD required by blind deblurring can be
easily implemented with the well-known gradient-based hyper-
Laplacian priors [58]. To the best of our knowledge, it has been
the first time that the concept of DPD is clarified and formulated
for the blind deblurring problem and to be demonstrated very nec-
essary for a blind deblurring method both understandable and
applicable. In specific, inspired by the first daring try for discrimi-
native blind deblurring in [4], our image prior essentially falls into
a spatially variant hyper-Laplacian model. Secondly, a plug-and-
play algorithm is derived to alternatively estimate the intermedi-
ate sharp image and the nonparametric blur kernel. With the
numerical scheme, intermediate image estimation is then simpli-
fied to a simple image filtering problem. Finally, a great many
experiments are performed accompanied with comparisons with
state-of-the-art methods on both synthetic benchmark datasets
and real blurry images in various scenarios, e.g., natural, manmade,
low-illumination, text, or people. Experimental results validate
well the effectiveness and robustness of the proposed approach,
which is proved to be a promising new candidate solution for blind
image deconvolution.

The rest of the paper is organized as follows. In Section 2, a pure
gradient-based discriminative image model is provided as a novel
candidate solution to blind image deblurring. To test its perfor-
mance, Section 3 formulates blind deblurring into an uncon-
strained optimization problem and solves it utilizing a plug-and-
play numerical scheme. In Section 4, a series of comprehensive
analysis is performed to empirically clarify the motivation of this
paper in an intuitive perspective. Section 5 provides numerous
experimental results so as to demonstrate the effectiveness and
robustness of the proposed solution along with comparisons
against the state-of-the-art methods. This paper is finally con-
cluded in Section 6. We should note that, the present journal paper
is an extensively extended version of our previous conference
paper published in [72]. The difference mainly lies in the following
three aspects: (1) A fairly more comprehensive overview is pro-
vided on blind image deblurring algorithms, following which the
dual principles of discriminativeness are claimed for the first time
for blind deblurring; (2) A fairly more detailed analysis is provided
on the motivation of proposing dual principles of discriminative-
ness in this paper, where Section 4 is a completely new part; (3)
A fairly more convincing experimental comparison has been made
among the proposed approach and existing blind methods, partic-
ularly those very recent deep learning-based ones [68,69,70,14,73].
2. Proposed gradient-based discriminative prior

This section explores the potentials of pure gradient-based
modeling for blind deblurring, aiming to propose a simpler yet
much more robust heavy-tailed discriminative image prior. We
are to preliminarily show that the expectation can be realized by
integrating those re-refined ideas from existing priors in blind
deblurring and image filtering. Hence, another role of this paper
is to throw out a brick to attract a jade, just with the hope that
more practical yet simpler methods may be produced for the blind
deblurring problem.

Our discussion begins with the first daring attempt towards dis-
criminative modeling for blind image deconvolution, i.e., the nor-
malized sparsity [4]. However, as indicated in [2,3], its practical
performance is fairly limited according to the experimental results
on both synthetic and real-world data, which is the exact reason
that the normalized sparsity-based prior receives no further atten-
tion after the publication of [4]. In fact, our work in this paper
reveals an interesting and instructive fact that, the principle of dis-
criminativeness between a sharp image and its blurry counterpart,
being greatly emphasized by the normalized sparsity [4], is really
not the solely essential element for nonparametric blind restora-
tion. As noted in Section 1, the dual principles of discriminative-
ness are the decisive components for achieving successful blind
deblurring in practice. Thus, a new candidate prior for blind image
deconvolution is advocated in this paper, given as

R uð Þ ¼
X
p

-x;p uð Þ � @xup

�� ��a þX
p

-y;p uð Þ � @yup

�� ��a; ð1Þ

where u is a latent sharp image, p 2X(u) a pixel index, a a positive
number far less than 1, and o a derivative operator, and -x,p(u) a
positive weight related to pixel index and derivative direction.
Obviously, model (1) is an adaptive variant of the well-known
hyper-Laplacian image priors [58]. Meanwhile, it is not difficult to
deduce that the core novelty of prior (1) should be in the definition
of -x,p(u) and -y,p(u) which needs incorporate the demanded DPD
for plausible intermediate image update.

The first aspect of discriminativeness in (1) is between a latent
sharp image and its blurry counterpart, which guarantees that the
optimal solution of model-based blind image deblurring should
not be a pair of blurry image and delta kernel. While, the second
aspect of discriminativeness is between salient edges and faint tex-
tures, which guarantees that interfering textures should be
removed from the intermediate sharp image for ensuring accurate
and robust blur kernel estimation, as validated in existing methods
[24,25,26,27]. Guided by the DPD idea, we simply formulate R(u)
into a pure gradient-based composite image prior. Specifically,
-o,p(u),o 2 {x,y} is defined as

-o;p uð Þ ¼ 1� t

Do uð Þð Þb þ eþ
t

So pð Þð Þb þ e ð2Þ

where b is a positive power, t is a number between 0 and 1, and e is
a small positive number to avoid division by zero, and Do(u) and
So(p) are expressed respectively as

Do uð Þ ¼
X

p2X uð Þ
@oup

�� ��2 !1=2

¼ k @ou k2; ð3Þ

So pð Þ ¼
X

q2X pð Þ
/p; q � @ouq

�����
�����; ð4Þ

where X(p) in (4) is a rectangular field centered at pixel p, and /p,q

is defined according to the spatial affinity harnessing the distance
function of Gaussianity, i.e.,

/p; q / exp � xp � xq
� �2 þ yp � yq

� �2
2r2

 !
;

where r is a spatial scale to be specified in implementation.
The adaptive weight defined in (2) is to be demonstrated a very

effective and robust choice for blind deblurring. It is not hard to
find that, the first aspect of discriminativeness desired by the pro-
posed model (1) is simply achieved by amending the normalized
sparsity in [4]. While, the second aspect of discriminativeness for
accurate intermediate image update is further ensured by regulat-
ing the relative total variation (RTV) in [5]. Actually, the term So(p)
used in (2) was originally proposed in [5] for image filtering and
manipulation, whose value in a window just with textures is found
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statistically smaller than that in a window also containing struc-
tural edges. To the best of our knowledge, it has been the first time
that RTV is successfully borrowed for achieving state-of-the-art
blind deblurring performance as a regularization penalty.

Let’s dive into (1) and (2) for more details. One finding is that,P
pj@xupja= Dx uð Þð Þb þPpj@yupja= Dy uð Þ� �b plays a primary role in

discriminating sharp images from blurred ones as proper settings
are provided to a,b. Apparently, above regularization term natu-
rally degenerates to the normalized sparsity in [4] as a,b are equal
to 1. In other words, Eq. (3) exactly originates from [4] in spite that
the normalized sparsity measure itself performs inferiorly to state-
of-the-art blind deblurring methods. Another finding is that, the
performance of above regularization term could be ulteriorly

boosted via
P

pj@xupja= Sx pð Þð Þb þPpj@yupja= Sy pð Þ� �b. The reason lies
in that it is able to remove the interfering textures while making
the salient structures stand out more accurately in the intermedi-
ate sharp image. Such additional amending is proved critical for
higher quality blind deconvolution in spite that the amending
strength governed by the parameter t is relatively less. A large
amount of experiments demonstrate that t being set as 0.05 satis-
factorily serves the deduced plug-and-play algorithm in Section 3.
The above statements are to be comprehensively analyzed and sys-
tematically validated in Sections 4 and 5, respectively.
3. A plug-and-play numerical scheme to blind deconvolution

As the blur is assumed spatially invariant, the blurred image
observation process can be described as

g ¼ k � uþ n; ð5Þ
where u denotes the latent sharp image, g the captured blurry
image, k the blur kernel corresponding to trajectory of camera shake
or out-of-focus of lens, and n the possible random noise. It is known
that blind image deconvolution is mathematically ill-posed because
there are infinite solution pairs (u, k) satisfying the formulation (5).
Therefore, appropriate regularization should be imposed on both
the image u and the kernel k.

Harnessing the proposed model (1), a MAP-based objective
function for blind deblurring can be expressed as

J u; kð Þ,k g � k � u k22 þ kR uð Þ þ gk k k22; ð6Þ
where k and g are the two positive adjusting parameters. The first
quadratic term is for the image fidelity, while the third term is a
Tikhonov regularization on the blur kernel k. Note that, the formu-
lation (6) works free of any ad-hoc modeling tricks, e.g., continua-
tion, or additional image processing operations such as bilateral
smoothing or shock filtering. Here, it deserves pointing out that
the trick of continuation is applied in the recent breakthrough work
[3] as well as its three variants [15,71,38]. Actually, continuation is
found fairly important for TV workable in blind deblurring, too,
being demonstrated in [18] and other state-of-the-art approaches.
In consequence, the blind deconvolution performance of the pro-
posed algorithm is overwhelmingly determined by the proposed
discriminative image prior (1), considering that the Tikhonov regu-
larization on the blur kernel is a standard configuration in a large
majority of existing approaches. In this paper, the tuning parameter
g for the kernel regularization is universally set as 2.

Now, the image and the kernel can be obtained by solving the

joint minimization problem û; k̂
� �

¼ argminu;kJ u; kð Þ in an alternat-

ingly iterative manner. Provided the (i � 1)th iterative solution of
k(i�1), u(i) and k(i) are then respectively solved by

u ið Þ ¼ argminuJ u; k i�1ð Þ
� �

and k ið Þ ¼ argminkJ u ið Þ; k
� �

. Particularly, a

plug-and-play numerical scheme is introduced in Section 3.1 to
estimate the intermediate sharp image u(i) wherein the image fil-
tering step is implemented via reweighted least squares
approximation.

3.1. A plug-and-play scheme to intermediate image estimation

The half-quadratic regularization strategy is used to estimate
u(i) via decomposing the original minimization problem into two
simpler sub-problems. Specifically, an auxiliary variable is intro-
duced corresponding to u, i.e., let u = z a new objective function
can be then obtained as

J u; z; k i�1ð Þ
� �

,k g � k i�1ð Þ � u k22 þ kR zð Þ þ qk u� z k22:

The minimization solution of J u; z; k i�1ð Þ
� �

is expected to

approach that of J u; k i�1ð Þ
� �

as q is close to the infinity. In each

alternative minimization over u and z, it is clear that u can be effi-
ciently calculated via use of fast Fourier transform (FFT) as a closed
form solution. That is,

u ¼ F�1
F k i�1ð Þ
� ��

F gð Þ þ qF zð Þ

F k i�1ð Þ
� ��

F k i�1ð Þ
� �

þ q

0
BB@

1
CCA; ð7Þ

where F and F
�
represent the FFT and its complex conjugate, respec-

tively, and F�1 denotes the operation of inverse FFT. In addition, z is
simply initialized to be a zero image. Given u, z is then numerically
computed by minimizing the sub-problem

k u� z k22 þ
k
q
R zð Þ: ð8Þ

Apparently, solving (8) actually amounts to an amendatory step
of image smoothing regularized by (1). In this perspective, the
intermediate sharp image estimation falls into a plug-and-play
framework seminally proposed in [49,50] and later extended and
harnessed in [51,52,53,54,55,56]. It should be noted that, current
plug-and-play-based papers mostly make use of state-of-the-art
Gaussian denoisers, among which BM3D [57] is the most popular
candidate. While, to the best of our knowledge, the present paper
has been the first applying the plug-and-play idea for blind image
deconvolution via use of a specifically customized discriminative
prior. Therefore, the above plug-and-play scheme has a very large
extension space as more advanced discriminative image priors are
available.

3.2. Image smoothing with the discriminative prior

There are at least two solution strategies for solving (8) in prin-
ciple. One is to apply the half-quadratic regularization or the
ADMM (Alternating Direction Method of Multipliers), e.g.,
[55,56], for fast alternating computation. While, this paper har-
nesses another strategy to solve (8) directly for more stable
calculation.

First of all, R zð Þ is rewritten in a slightly different manner as (9),
which is the discriminative regularization (1) imposed on z

R zð Þ ¼P
p
-x;p zð Þ � @xzp

�� ��a þP
p
-y;p zð Þ � @yzp

�� ��a
�P

o

P
p
-o;p zð Þ � 1

@ozpj j2�aþ e
� @ozp
� �2

,
P
o

P
p
-o;p zð Þ � mo;p zð Þ � @ozp

� �2
;

ð9Þ

where the approximation in the second line is due to the introduc-
tion of e for numerical stability, and
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mo;p zð Þ ¼ 1

@ozp
�� ��2�a þ e : ð10Þ

In this case, (9) can be rewritten in a matrix–vector form. Then,
(8) is minimized by a following equivalent energy functional

k u� z k22 þ
k
q
R zð Þ; ð11Þ

where u and z are the vectorized representations of u and z, respec-
tively, and R zð Þ is
R zð Þ ¼

X
o

zTDT
oWo zð ÞVo zð ÞDoz; ð12Þ

where Wo(z) and Vo(z) are the diagonal weighting matrices con-
structed by -o,p(z) and vo,p(z) defined at all pixels, and Do is a BCCB
(block circulant with circulant blocks) matrix corresponding to the
derivative operator in the o-direction, and T denotes the transpose
operation.

With (12), minimization of (11) boils down to iteratively solv-
ing a linear system as

qI þ kLð Þ z ¼ qu; ð13Þ
where I is a diagonal identity matrix and L is computed on the basis
of a previous estimate of z, i.e.,

L ¼
X
o

DT
oWo zð ÞVo zð ÞDo: ð14Þ

As the forward difference is used to approximate the discrete
gradients in Do, L would turn to a sparse five-point Laplacian
matrix. Owing to its nature of symmetric positive definiteness,
the incomplete Choleskey decomposition (ICD) can be applied
and then the preconditioned conjugate gradient (PCG) method is
used to solve (13) efficiently. Approximately, 3 s are expended to
process a gray-scale image with 500 thousand pixels on a Laptop
computer (Intel i7 2.60 CPU, 12G memory) running MATLAB v7.0.
Combining Sections 3.1 and 3.2, the main steps of our intermediate
image estimation are summarized in Algorithm 1, wherein the dis-
criminative image smoothing step is outlined in Algorithm 2.
Algorithm 1 Intermediate image estimation

1 : input : Blurred image g; blur kernel kði - 1Þ
; parameter k:

2 : initialization : u g; z zero; q 0:01:
3 : while q < qmax do

4 : update u by computing ð7Þ via FFT:
5 : update z by minimizing ð8Þ via Algorithm 2:

6 : update q by q 2q:
7 : end while

8 : output : uðiÞ:

Algorithm 2 Discriminative image smoothing

1 : input : vectorized image u; parameters k
q; t; r; a; b

2 : initialization : z u; Wo  zero; Vo  zero:
3 : for l ¼ 1 : 4 do

4 : update Wo; Vo by computing ð2Þ and ð10Þ:
5 : update z by solving the linear system in ð13Þ:

6 : endfor
3.3. Blur kernel estimation

With an estimated intermediate image u(i), blur kernel k(i) can
be directly produced by solving the Tikhonov-based energy func-
tional k(i) = arg min kJ(u(i),k). In spite of that, a slightly modified
functional defined in the gradient domain is used for more accu-
rate estimation, as commonly practiced in existing blind deblur-
ring works [3,19,25,37,38]. That is,

k ið Þ ¼ argmin
k
k rg � k � ruðiÞ k22 þ gk k k22; ð15Þ

wherein k(i) can be solved very efficiently in a closed-form via use of
FFT. One more point to be noted is that, blur kernel k(i) should be
also projected onto the set C = {k � 0,Ri Rj|ki,j| = 1} considering the
physical property of blur kernels. Another consideration is that a
multi-scale estimating scheme is applied which is commonly prac-
ticed in blind deblurring since Fergus et al. [1] in 2006, aiming to
deal with large-scale kernel estimation and reduce the risk of get-
ting stuck in poor local minima. In each scale, the input image is
a down-sampled version from the original blurred image g (in the
finest scale the input image is g itself). While the initialized blur
kernel k(0) is set as an up-sampled version from the estimated result
in the coarser scale (in the coarsest scale k(0) is set as a Dirac pulse).
For clarity, the steps for blur kernel estimation in a single scale is
summarized in Algorithm 3.

Algorithm 3 Blur kernel estimation in a single scale

1 : input : downsampled blurry image:
2 : initialization : kð0Þ  upsampled coraser scale kernel:

3 : for i ¼ 1 : 5 do
4 : solve uðiÞ ¼ argminuJðu; kði�1ÞÞvia Algorithm 1:

5 : solve kðiÞ using ð15Þ:
6 : end for

7 : output : intermediate image û and blur kernel k̂:
3.4. Non-blind restoration

Given the intermediate image u and the blur kernel k̂, the final
deblurred image can be produced by utilizing a non-blind restora-
tion procedure. In literature, the Laplacian prior-based approach
[58] is one of the most popular choices for standard non-blind
deblurring, which has been used in Lai et al. [2] for fair compar-
isons of different blind approaches. We note that as dealing with
real blurred images, the non-blind scheme in [38] is found more
appropriate. In addition, as images are partially saturated, the
recent non-blind deblurring method by Whyte et al. [59,60] is con-
sidered more robust and has been also used in [2]. With the above
considerations, all the experimental analysis and comparisons are
:

7 : output : reshape z into a 2D image z:



Fig. 1. Sensitivity analysis of the proposed model (1) on the spatial scale r. The first
row presents the blurred image image01-kernel01 (225 � 225) from the dataset of
Levin et al. [19]. The intermediate image and final deblurred image accompanied
with the estimated kernel corresponding to each setting of r are provided in each of
three columns (from the second to the third rows). The PSNR of final deblurred
images are: (a) 31.93 dB (r = 1); (b) 32.03 dB (r = 3); (c) 32.03 dB (r = 5).

Fig. 2. Sensitivity analysis of the proposed model (1) on the spatial scale r. The first
row presents the blurred image image04-kernel05 (225 � 225) from the dataset of
Levin et al. [19]. The intermediate image and final deblurred image accompanied by
the estimated kernel corresponding to each setting of r are provided in each of
three columns (from the second to the third rows). The PSNR of final deblurred
images are: (a) 34.92 dB (r = 1); (b) 34.66 dB (r = 3); (c) 34.11 dB (r = 5).
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being made as fair as possible, ensuring that the same non-blind
deblurring algorithm is applied in each group of experiments. An
exception is the comparison made on the benchmark dataset
Köhler et al. [61], where the compared approaches are run by their
own authors who are requested to provide their best results as
claimed in [61]. As for this dataset, the non-blind scheme in [38]
is used to produce our final deblurred images. In spite of that, it
is definite that the primary component affecting the final deblur-
ring quality is the precision of kernel estimation.
4. Analysis

The analysis made in this part is to make clear in an intuitive
perspective the motivation of the discriminative image prior as for-
mulated in (1). Although there are no any theoretical results or
mathematical proofs, a few aspects of empirical analysis are largely
getting the point.

4.1. Specification of model parameters

There are four tunable parameters in the proposed model (1),
namely, r,a,b,t We find that, they can be set as 3, 0.1, 0.5, and
0.05, respectively, for acceptable performance in a majority of
benchmark and real-world experiments. While, we should note
that other candidates for settings on r, a, b, t are possible to better
serve the task. Although automatic estimate or learning of those
parameters is appealing, it is beyond the scope of this paper.

According to the specifications, a set as 0.1 implies that the pro-
posed image prior (1) is really heavy-tailed and unnatural, which is
similar in form to several previous algorithms [28,29,30]. Yet, the
model (1) implements the required DPD due to the newly intro-
duced adaptive weight -o,p(u) defined at each image pixel. In the
meanwhile, t set as 0.05 implies that 1/((Do(u))b + e) plays a differ-
ent role from 1/((So((p))b + e) in terms of the regularization
strength. Actually, the former discriminates the blurred image
from its sharp one, while the latter is responsible for amending
the intermediate image. More concretely, the latter recognizes
and smooths out the interfering faint textures or other artifacts,
which are known harmful to the accurate kernel estimation. Com-
putations on both synthetic and real-world images show that,
t = 0.05 and b = 0.5 are indeed robust choices for making the model
(1) discriminative as a whole and also applicable for achieving
state-of-the-art blind deblurring performance in various imaging
scenarios.

It is additionally found that choice of the scale r is not much
sensitive in terms of deblurring quality as demonstrated in Figs. 1
and 2. As r is specified to 1, 3, 5, respectively, the corresponding
deblurring results including the intermediate sharp image, the
estimated kernel and the final deblurred image are perceptually
rather similar to each other in both figures. In addition, image
PSNR results also demonstrate that r being set as 3 is an appropri-
ate choice. Hence, the insensitivity of our prior tor greatly relieves
us the annoying parameter tuning, which is much different from
what is done in the original RTV [5]. The reason is that, the faint
details or other artifacts to be smoothed out by 1/((So(p))b + e)
are generally not in large scales due to the complementary role
played by the term 1/((Do(u))b + e).

4.2. Discriminativeness and effectiveness

Firstly, two benchmark datasets proposed by Levin et al. [20]
and Köhler et al. [61] are used to test the discriminativeness of
the prior (1) in discriminating between blurry and sharp images.
In [20], each ground truth gray-scale image is convolved by 8 blur
kernels of sizes from 13 � 13 to 25 � 25, producing 32 test images



Fig. 3. Ratio curves of our prior (t = 0.05, t = 0, t = 1) and the normalized sparsity prior [4]. (a) Levin et al. [20]; (b) Köhler et al. [61].
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altogether. While in [61], every true color image is convolved by 12
blur kernels created to approximate the real image blurs, with 48
test images generated in total. To be noted, as pointed out by the
authors blur kernels numbered 1, 3, 4, 5, 8, 9, 11 tend to be approx-
imately spatially uniform, while blur kernels 2, 6, 7, 10, 12 appear
non-uniform. For each image pair (g, u) in the two datasets, we can
calucate its prior ratio as R(g)/R(u) with the parameters specified in
Section 4.1.
Table 1
Average statistics of PSNR (dB) of the final deblurred images corresponding to each blind

Blurred Image No. [1] [25] [19]

image01 30.40 29.87 31.59
image02 29.39 29.55 30.35
image03 31.61 32.43 33.18
image04 26.95 30.60 29.36
Average 29.59 30.61 31.12

Table 2
Average statistics of PSNR (dB) of the final deblurred images corresponding to each blind

Blurred Image No. [1] [25] [4] [5]

image01 25.89 30.60 28.20 31.63
image02 19.48 24.87 22.50 23.77
image03 25.54 30.81 27.35 30.95
image04 19.53 26.78 23.61 26.49
Average 22.61 28.29 25.42 28.21

Table 3
Average statistics of PSNR (dB) of the deblurred images corresponding to each deep mode

Dataset Levin et al. [20]
Blurred Image No. [14] [68]

image01 25.76 25.51
image02 24.23 24.57
image03 25.40 25.51
image04 26.13 25.88
Average 25.38 25.37
Ideally, prior ratios of all image pairs should be greater than
one, reflecting preference of our model over a sharp image to its
blurry counterpart. Then, the curve of prior ratios is plotted for
each dataset, as shown in Fig. 3. It is observed that both ratio
curves are above the level line valued one, therefore demonstrating
the discriminativeness of the model (1) on the two image sets. The
ratio curve of the normalized sparsity [4], i.e., L1/L2, is plotted for
comparison as shown in Fig. 3, too. It is clear that L1/L2 is more dis-
deblurring approach on the dataset by Levin et al. [20].

[41] [23] [40] Ours

31.97 31.78 30.45 32.20
29.49 30.02 29.11 31.28
32.56 33.71 31.42 32.99
30.17 29.44 27.85 30.99
31.05 31.24 29.71 31.87

deblurring approach on the dataset by Köhler et al. [61].

[26] [64] [62] [17] Ours

30.97 29.01 28.74 29.83 31.69
25.07 22.43 23.57 24.05 25.58
31.56 27.76 28.04 30.55 31.65
26.72 23.81 24.48 25.50 27.14
28.58 25.75 26.21 27.48 29.02

l [14,68,73] on Levin et al. [20] and Köhler et al. [61].

Köhler et al. [61]
[73] [14] [68] [73]

27.51 28.52 28.60 29.42
25.46 22.55 22.46 23.19
26.38 28.55 28.66 29.81
27.34 23.74 23.68 24.78
26.67 25.84 25.85 26.80



Fig. 4. Restored images with estimated kernels corresponding to each blind method, including the RTV prior and our model (1) with other settings of t on the image image02-
kernel08. The results of [1,25,4,26,64,62,17] are the best ones as remarked in [61], whose kernel sizes are different from each other.
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criminative than the model (1) on both datasets. In fact, computa-
tions on other numerous image pairs have shown that the discrim-
inativeness of L1/L2 is universal to a great degree. However, the
success of blind image deblurring is not solely decided by the dis-
criminativeness between blurry and sharp images. On the one
hand, the blind deblurring performance of L1/L2 is questionable
in both synthetic and real-world experiments as claimed by both
[2,3]. On the other hand, existing models for blind image deblur-
ring are mostly non-discriminative including those ones proposed
very recently, e.g., [3,15,30,38].

Let’s dive into the image prior (1) a little more bit. As the bal-
ance coefficient t is set as 0, we see from the prior ratio curve in
Fig. 3 that our degenerated prior becomes fairly more discrimina-
tive than the case as t is set as 0.05. Comparatively, as t is set as
1 our degenerated prior turns much less discriminative. In conse-
quence, it is concluded that the regularization termP

pj@xupja= Dx uð Þð Þb þPpj@yupja= Dy uð Þ� �b has rised a primary role
in discriminating a sharp image from its blurred counterpart, while

the term
P

pj@xupja= Sx pð Þð Þb þPpj@yupja= Sy pð Þ� �b is more capable of
driving minimum, i.e., intermediate sharp images such as the ones
in Figs. 1 and 2, physically meaningful to reasonable blur kernel
estimation. That is because, this term is able to locate and remove
the interfering faint textures or other artifacts which are consid-
ered harmful to accurate kernel estimation.

On the second, the effectiveness of the proposed prior is
to be undergone a preliminary validation. The deblurred images
and estimated kernels are produced by the proposed algorithm
for the above two benchmark datasets, i.e., Levin et al. [20] and
Köhler et al. [61]. For quantitative evaluation, the PSNR values
are computed and listed in Tables 1 and 2 corresponding
to the blurred images in the datasets [20,61], respectively. In the
meanwhile, the PSNR values of several representative
model-based algorithms are given for comparison, including both
uniform [1,25,19,41,23,40,4,26,64] and non-uniform [17,62]
ones.

It is obviously observed that our method has achieved compara-
ble or superior performance to existing state-of-the-art algorithms
on both image sets. When running our approach, the regularization
parameter k is set as 0.0005 for the dataset by Levin et al. [20] and
0.0001 for the dataset by Köhler et al. [61]. For visual perception,
the image image02-kernel08 in Köhler et al. [61] is taken as an
example, whose corresponding deblurred image and estimated
kernel by each method are provided in Fig. 4. We see that the ker-
nel by our method resembles those by [25] and [26] very much and
naturally the final deblurred images are visually comparable to
each other, in spite that the PSNR of our approach in this case is
slightly less [25,26].

For the sake of comparison completeness, three recent deep
learning-based blind deblurring methods are also tested on the
two benchmark datasets. The key differences among those
learning-based methods are in the network structure and learning
mechanism. Specifically, the multi-scale convolutional neural net-
works in [14], the generative adversarial networks in [68], and the
coupled convolutional-recurrent neural networks in [73] are
respectively tested by directly running the corresponding pre-
trained models. Correspondingly, Table 3 provides their average
PSNR over each image in both datasets for quantitative compari-
son. It is clearly observed that their performance is really far from
enough to deal with blurs in different scales. For example, even the
best-performing one with the coupled convolutional-recurrent
neural networks [73] among the three deep learning-based meth-
ods cannot be comparable to most of model-based blind deblurring
methods as shown in Tables 1 and 2.

On the third, to validate the necessity of both terms in model

(1), i.e.,
P

pj@xupja= Dx uð Þð Þb þPpj@yupja= Dy uð Þ� �band P
pj@xupja=

Sx pð Þð Þb þPpj@yupja= Sy pð Þ� �b
; the paper also makes an ablation

study with both a,b set as 1 in (1), which allows inspecting the
complementary role of its two originating models, i.e., normalized
sparsity measure [4] and relative total variation [5]. Specifically,
the benchmark dataset of Köhler et al. [61] is harnessed here for
testing. According to Table 2, the average PSNR score of normalized
sparsity measure [4] across 12 blur kernels corresponding to each
image is 28.20 dB (image01), 22.50 dB (image02), 27.35 dB (im-
age03), and 23.61 dB (image04), respectively. Comparatively, the
average PSNR score of relative total variation [5] for each image
is higher, i.e., 31.63 dB (image01), 23.77 dB (image02), 30.95 dB
(image03), and 26.49 dB (image04), respectively. It is observed
that, the normalized sparsity measure is indeed far more satisfac-
tory in blind deblurring performance, while RTV performs fairly
better than the normalized sparsity measure. A more interesting
observation is that, RTV has performed comparably to [25,26] or
even superiorly to [1,64,62,17]. While, we note that the composite
discriminative prior (1) has outperformed both the normalized
sparsity measure and relative total variation. Besides, Fig. 4 also
visually presents the influence of other settings of t on the perfor-
mance of the composite prior (1), revealing the significance of



Fig. 5. Analysis on convergence of the proposed method in terms of the sum of squared distance. Left to right: intermediate image, blur kernel, and deblurred image; Top to
bottom: image01-kernel01, image02-kernel02, image03-kernel03, and image04-kernel04.
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choosing a proper setting for balancing the normalized sparsity
measure and relative total variation. Hence,P

pj@xupja= Sx pð Þð Þb þ Ppj@yupja= Sy pð Þ� �b
;
P

pj@xupja= Sx pð Þð Þb þ Pp
j@yupja= Sy pð Þ� �b would be both indispensible to the success of the
proposed blind deblurring approach. Experimental results in Sec-
tion 5 on the more challenging synthetic and real-world datasets



Fig. 6. The multi-scale estimates (5 iterations per scale) of blur kernel and intermediate sharp image for image01-kernel01.

Fig. 7. Blur kernels with different sizes used for generating the 100 synthetic
uniform blurry images in Lai et al. [2].

Table 4
Average statistics of PSNR (dB), SSIM [66], and no-reference (no-ref.) metric [67] of the fina
images generated by kernel01 (31 � 31) in the dataset of Lai et al. [2].

Metric Type [1] [25] [26] [4] [19] [17] [4

PSNR ALL 16.66 19.07 22.64 19.78 19.45 18.95 22
SSIM ALL 0.5429 0.6846 0.8346 0.7335 0.7287 0.6576 0.
No-ref. ALL �18.05 �11.94 �10.43 �11.15 �11.23 �13.91 �

Table 5
Average statistics of PSNR (dB), SSIM [66], and no-refrence (no-ref.) metric [67] of the final
images generated by kernel02 (51 � 51) in the dataset of Lai et al. [2].

Metric Type [1] [25] [26] [4] [19] [17] [4

PSNR ALL 15.67 17.65 21.65 18.02 18.77 17.59 21
SSIM ALL 0.4606 0.5892 0.8096 0.6433 0.6812 0.5183 0.
No-ref. ALL �18.02 �13.00 �11.64 �11.55 �12.29 �14.75 �

Table 6
Average statistics of PSNR (dB), SSIM [66], and no-refrence (no-ref.) metric [67] of the final
images generated by kernel03 (55 � 55) in the dataset of Lai et al. [2].

Metric Type [1] [25] [26] [4] [19] [17] [4

PSNR ALL 15.25 18.06 20.95 17.42 18.95 17.39 21
SSIM ALL 0.4571 0.6251 0.7739 0.6123 0.6923 0.5402 0.
No-ref. ALL �17.96 �12.61 �11.05 �11.61 �11.73 �14.24 �

314 W.-Z. Shao et al. / Neurocomputing 413 (2020) 305–327
are to further demonstrate the merit of our proposed prior (1) and
its superiority to many state-of-the-art models.
4.3. Convergence and computational cost

We take four blurry images image01-kernel01, image02-
kernel02, image03-kernel03, and image04-kernel04 in the dataset
of Levin et al. [20] for example, demonstrating convergence of the
proposed approach in terms of sum of squared distance over both
estimated intermediate images and blur kernels. Note that, the
sum of squared difference over images makes more sense to mon-
itor the algorithm convergence than that over kernels. The conver-
gence curves for each example are provided in Fig. 5, respectively.
l deblurred images corresponding to each blind deblurring approach on the 25 blurred

1] [27] [65] [44] [40] [38] [23] Ours

.26 22.11 21.25 21.38 21.44 21.50 21.28 23.47
8181 0.8102 0.7826 0.8024 0.7774 0.8272 0.8191 0.8880
10.53 �10.82 �11.30 �10.86 �10.81 �10.44 �10.87 �10.28

deblurred images corresponding to each blind deblurring approach on the 25 blurred

1] [27] [65] [44] [40] [38] [23] Ours

.05 20.96 18.58 18.74 19.33 19.85 18.13 21.92
7658 0.7765 0.6172 0.6774 0.6547 0.7537 0.6460 0.8322
11.38 �12.10 �12.21 �12.40 �11.73 �13.04 �12.86 �11.27

deblurred images corresponding to each blind deblurring approach on the 25 blurred

1] [27] [65] [44] [40] [38] [23] Ours

.20 19.96 19.21 18.84 18.90 19.01 19.15 21.87
7948 0.7185 0.6802 0.6771 0.6470 0.6939 0.7295 0.8419
11.22 �12.07 �12.21 �12.19 �11.31 �12.76 �12.30 �10.91



Table 7
Average statistics of PSNR (dB), SSIM [66], and no-refrence (no-ref.) metric [67] of the final deblurred images corresponding to each blind deblurring approach on the 25 blurred
images generated by kernel04 (75 � 75) in the dataset of Lai et al. [2].

Metric Type [1] [25] [26] [4] [19] [17] [41] [27] [65] [44] [40] [38] [23] Ours

PSNR ALL 14.31 15.19 17.71 14.87 16.78 15.56 17.81 16.64 16.59 16.14 16.00 16.29 18.27 19.13
SSIM ALL 0.3346 0.4383 0.6128 0.4228 0.5614 0.3988 0.5844 0.5736 0.4994 0.4907 0.4473 0.5304 0.6474 0.6969
No-ref. ALL �20.57 �16.32 �16.07 �16.50 �14.23 �14.04 �13.34 �18.22 �14.36 �16.66 �11.70 �17.69 �14.49 �13.82

Fig. 8. Deblurring results of the blurred image saturated04-kernel04 in Lai et al. [2] corresponding to the top eight methods in terms of PSNR/SSIM. The value of no-reference
metric [67] is shown in each image for visual perception assessment. Their PSNR/SSIM values are [27] (12.81 dB/0.4182), [25] (12.98 dB/0.2957), [44] (13.05 dB/0.4749), [1]
(13.14 dB/0.3625), [40] (13.20 dB/0.3563), [41] (13.53 dB/0.5203), [26] (14.94 dB/0.4482), Ours (16.29 dB/0.4848).

Fig. 9. Deblurring results of the blurred image text04-kernel04 in the dataset Lai et al. [2] corresponding to the top eight approaches in terms of PSNR/SSIM. The value of no-
reference metric [67] is shown in each image for visual perception assessment. Their PSNR/SSIM values are [65] (13.63 dB/0.5611), [40] (13.72 dB/0.5634), [17] (13.74 dB/
0.5605), [19] (13.83 dB/0.5903), [26] (13.91 dB/0.5724), [27] (14.03 dB/0.6386), [23] (16.30 dB/0.7166), Ours (21.43 dB/0.8437).
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Note that, as for each blur kernel, the overall alternating iterations
are to depend on the size of the kernel. For example, the size of ker-
nel01 is 19 � 19 and then a 4-scale procedure of Algorithm 3 is to
be implemented. Thus, as restoring image01-kernel01, there are 20
alternating iterations in the estimation process for either the ker-
nel or the image. According to Fig. 5, it is observed that most error
curves, especially those corresponding to the estimated intermedi-
ate images, decrease quickly from one scale to another and become
flat after 2 or 3 iterations in each scale, demonstrating the stable
performance of the proposed approach. Besides, along with each
error curve the finally estimated intermediate image, blur kernel,
as well as the deblurred image are provided. And, we also take
the blurry image image01-kernel01 for example, presenting itera-
tive estimates of the intermediate image and blur kernel in Fig. 6
for visual perception.

As remarked in Section 3.2, the major computational burden of
the proposed approach is on solving Eq. (13) where PCG is har-
nessed in this paper. We take all the 8 blurred images generated
by kernel01 in the dataset of Levin et al. [20] for example. On aver-
age, the running cost is about 1 min for each blind deblurring
experiment on the computing platform as previously detailed in
Section 3.2. In fact, we also implement our approach via a smilar
numerical scheme in [58] and the corresponding average cost
can be reduced to 15 s or so. In spite of that, all the experiment



Table 8
Average statistics of PSNR (dB) and SSIM [66] of the deblurred images corresponding to each deep model [14,68,73] on the 25 blurred images generated respectively by kernel01,
kernel02, kernel03, kernel04 in the dataset of Lai et al. [2].

Blur kernel kernel01 kernel02 kernel03 kernel04
Metric Type [14] [68] [73] [14] [68] [73] [14] [68] [73] [14] [68] [73]

PSNR ALL 19.09 18.96 19.39 17.43 17.51 17.83 17.35 17.49 17.55 15.80 16.00 15.82
SSIM ALL 0.6209 0.5817 0.6682 0.4742 0.4615 0.5332 0.4890 0.4758 0.5266 0.3898 0.3734 0.4160

Fig. 10. Results for the natural (N) image ‘outdoor’ corresponding to the blind methods [3,38] and Ours with reasonable kernels produced.

Fig. 11. Results for the manmade (M) image ‘coke’ corresponding to the methods [3,38] and Ours with reasonable kernels produced.

Fig. 12. Results for the manmade (M) image ‘postcard’ corresponding to the methods [3,23,27,38] and Ours with reasonable kernels produced.

316 W.-Z. Shao et al. / Neurocomputing 413 (2020) 305–327
results are produced by Algorithm 3 owing to its more stable and
precise estimation of blur kernels.

5. Results

This section validates the proposed approach on the datasets
proposed by Lai et al. [2] with comparisons against the current rep-
resentative blind deblurring algorithms: [1,4,17,19,23,25–27,38,4
0,41,44,65]. Note that the non-blind deconvolution schemes as
detailed in Section 3.4 are used for final restoration, and hence
the comparisons are fair and convincing. Besides the PSNR metric,
the SSIM in [66] and the no-reference metric in [67] are also har-
nessed for quantitative assessment of different methods in this
part. Note that, [67] is specifically proposed to evaluate the motion
deblurring quality which is claimed consistent with human feel-
ings and ratings to a certain degree.

The datasets in Lai et al. [2] include a synthetic one consisting of
100 blurred images generated by 4 blur kernels shown in Figs. 7



Fig. 13. Results for the manmade (M) image ‘wall’ corresponding to the methods [3,23,38,41,65] and Ours with reasonable kernels produced.

Fig. 14. Results for the people (P) image ‘cario1979’ corresponding to the methods [1,3,25,38] and Ours with reasonable kernels produced.
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and 25 true clear images divided into 5 categories, i.e., natural (N),
manmade (M), text (T), people (P), and saturated (S), as well as a
real one containing 100 blurred color images collected from either
previous deblurring works, or Flicker and Google Search, or those
captured by the authors themselves, which also fall into the above
five categories.

5.1. Synthetic experimental results

Tables 4–7 show the average statistics of the three metrics of
deblurred images corresponding to each of the four blur kernels,
respectively, as shown in Fig. 7. In each table, the row named
‘ALL’ represent the average evaluation across the five image cate-
gories, i.e., N, M, T, P, S. It is seen that the overall performance of
our proposed approach ranks the best in almost all scenarios in
terms of either PSNR, or SSIM, or no-reference metric, proving its
effective and robust functionality in dealing with different cate-
gories of blurred images with various kernel sizes.

We note an exception that in terms of the no-reference metric
[67], our approach seems perform slightly inferior to [40,41] as
dealing with images convolved by kernel04, as shown in Table 7.
However this objective evaluation does not comply with the prac-
tical visual perception. In fact, the comparion should be more
based on the PSNR and SSIM in this case. That is to say, sometimes
[67] will fail to fairly measure the quality of deblurred images,
especially for those satuated images shown in the following. A



Fig. 15. Results for the text (T) image ‘text2’ corresponding to the methods [3,27,38,41] and Ours with reasonable kernels produced.

Fig. 16. Results for the text (T) image ‘text3’ corresponding to the methods [3,38] and Ours with reasonable kernels produced.

Fig. 17. Results for the text (T) image ‘text6’ corresponding to the methods [3,38] and Ours with reasonable kernels produced.
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notable instance can be observed from Fig. 8, where our approach
has produced a blur kernel with very high precision and of course a
reasonably good deblurred image. It is found that, however, it only
ranks the fifth among the eight compared methods in terms of no-
reference metric. In fact, all the other approaches completely fail in
this example. Thus, visual comparisons demonstrate that [67] is
not applicable for fairly measuring the saturated image deblurring
quality to some extent. A similar phenomenon is also noted in the
text cases, e.g., the example shown in Fig. 9. Therefore, in this case
PSNR and SSIM should be more relied on for fair assessement of



Fig. 18. Results for the saturated (S) image ‘car2’ corresponding to the methods [3,19,38,65] and Ours with reasonable kernels produced.

Fig. 19. Results for the saturated (S) image ‘car5’ corresponding to the methods [3,38] and Ours with reasonable kernels produced.

Fig. 20. Results for the saturated (S) image ‘topresso’ corresponding to the methods [3,38] and Ours with reasonable kernels produced.

Fig. 21. Results for the saturated (S) image ‘family’ corresponding to the methods [3,38,65] and Ours with reasonable kernels produced.
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Fig. 22. Visual comparison among [3,38], and Ours on the saturated (S) image ‘garden’, where the proposed approach succeeds in producing a very reasonable kernel which
naturally leads to visually acceptable deblurred image while [3] has failed to a great degree.

Fig. 23. Visual comparison among [3,38], and Ours on the saturated (S) image ‘sydney_opera’, where both [3,38] have failed to a great degree while Ours succeeds in
producing a very reasonable kernel which naturally leads to a visually acceptable deblurred image.

Table 9
Running time (in seconds) of [3,38], and the proposed method for each realistic blurry image as shown in Figs. 10–23.

Time Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 21 Fig. 22 Fig. 23

[38] 304 741 384 199 613 1032 1167 391 948 356 348 471 1135 751
[3] 1383 3508 1580 845 2700 4508 5375 1764 3904 1489 1632 2012 5066 3155
Ours 974 2366 1010 606 1649 2879 3029 1138 3199 1128 1231 1547 3587 2573

Fig. 24. Intermediate sharp images corresponding to the blur kernels estimated by the three blind approaches [3,38], and Ours shown in Fig. 20.

320 W.-Z. Shao et al. / Neurocomputing 413 (2020) 305–327
various algorithms. In brief, the comprehensive evaluation demon-
strates that, our method achieves comparabe or superior perfor-
mance in all the five scenarios of synthetic blur as compared
against other approaches in Tables 4–7.

In addition, the aforementioned three deep learning-based
approaches [14,68,73] are tested here, too, largely for the sake of
comparison completeness. As stated above, the ordinary metrics
PSNR and SSIM are found more convincing to evaluate the blind
deblurring performance across different categories of blurred
images. As such, Table 8 just provides the average statistics of PSNR
and SSIM of deblurred images produced by each deep model
[14,68,73], corresponding to each group of 25 blurred images gen-
erated by kernel01, kernel02, kernel03, and kernel04, respectively,
in the dataset of Lai et al. [2]. It is obviously observed that all the
three deep models perform either comparably or inferiorly to most
of previous algorithms in Tables 4–7, let alone the proposed
approach. Therefore, the generalization capability of existing deep
learning-based blind deblurring methods [14,68,73] is really prob-
lematic as dealing with blurs in different imaging scenarios, e.g.,
natural, manmade, low-illumination, text, or people.

5.2. Realistic experimental results

Since there is not a reliable quantitative metric of measuring
the deblurring quality for the real, particularly the saturated or text
images, comparisons are made merely based on our visual percep-
tion. In this part, the practical performance of the recent break-
through work [3] is also tested.

The comprehensive assessment validates that the proposed
method is more robust than most of the compared approaches in
Section 5.1, which achieves comparable (N, M, P) or better (T, S)
performance on the whole set of 100 real images. In the mean-



Fig. 25. Deblurring results on the real blurred images corresponding to the four recent deep learning-based methods [14,68,69,73] the proposed approach (Ours).
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while, it is found that our approach performs much comparably to
both [3,38] on the five categories of blurred images, particularly on
those text and saturated ones.

Considering the presentation clarity and restricted paper space,
we just take several challenging blurry images in Lai et al. [2] for
example, and provide deblurred images corresponding to those
blind approaches capable of producing reasonable blur kernels.
Figs. 10–21 provide the deblurred results corresponding to 12
blurred images for visual perception. It is seen that the proposed
method, Pan et al. [3], and Pan et al. [38] can produce plausible ker-
nels in most scenarios. Most of the kernels are with tiny differ-
ences, which naturally lead to visually similar and acceptable
deblurred images. Nevertheless, other approaches just get occa-
sional success in those challenging experiments.

In spite of similar deblurring performance among [3,38], and
our approach on the above 12 blurred images, we note that as
for real blurry images such as ‘car4’, ‘night1’, ‘night4’, ‘notredame’,
‘text1’, ‘text12’, ‘garden’, and ‘sydney_opera’ in Lai et al. [2], either



Fig. 26. Deblurring results on the real blurred images (texts and car plates) corresponding to the four recent deep learning-based methods [14,68,69,73] and the proposed
approach (Ours).
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[38] or [3] or ocassionally both will generate much less accurate
kernels than those of our approach. We take the two saturated
images ‘garden’ and ‘sydney_opera’ for example. It is found that,
as for ‘sydney_opera’ both [3,38] completely fail to a great degree
and as for ‘garden’, [3] fails either while [38] is much less accurate
than the proposed method. Figs. 22 and 23 provide the deblurring
results for the three methods, from which it is observed our
method succeeds in recovering a very plausible blur kernel for each
image, validating more robustness of the proposed approach than
[3,38].

In addition, two notable advantages deserve noting for the pro-
posed approach. On the one hand, our method works with a dis-
criminative model while both [3,38] rely heavily on the L0-norm-
based gradient regularization. However, the hybrid regularizations
in [3,38] are apparently not necessarily preferrable to the sharp
images, due to which the continuation strategy has been exploited
in both [3,38] as well as most of other blind approaches. On the
other hand, although Pan et al. [3] introduces a new L0-norm-
based dark channel prior for blind deblurring, it results in a higher
computational cost than the proposed approach. For the sake of
clearness, the running time for all the images in Figs. 10–23 is sum-
marized in Table 9 (using the same experimental platform men-
tioned in Section 3.2), from which the efficiency difference
among [3,38], and the proposed approach can be observed. Clearly,
both the proposed approach and [3] are computationally more
expensive than [38] on all the compared images. Note that, the
computational burden of the deduced plug-and-play numerical
algorithm is mainly on the discriminative smoothing in Section 3.2,
whose fast implementation is another critical topic to be studied in
the near future and would naturally speed up the proposed blind
deblurring algorithm. In spite of that, the proposed approach in
the current is still more efficient than [3]. For instance, the pro-
posed approach runs about 21 min for the saturated image ‘to-
presso’ in Fig. 20 which is of size 606 � 690, while [3] costs
about 27 min. And, what is more important, as for those low-
illumination blurry images, our approach can generate visually
more pleasant intermediate sharp images than [3,38]. We still take
‘topresso’ for example and Fig. 24 shows the intermediate result
corresponding to each method.

As shown in Section 5.1, the generalization capability of existing
deep models [14,68,73] is really far from enough to deal with blurs
in different imaging scenarios, e.g., natural, manmade, low-
illumination, text, or peoples. Prior to closing this paper, this sub-
section further inspects the practical performance of those deep
models on the real blurred images. Besides the aforementioned
three deep models [14,68,73], additional two deep models in
[69,70] are also tested here. One is our recent improved method
upon DeblurGAN [68], dubbed DeblurGAN+ [69]. Another one in
[70] is a classical model-inspired deep learning method, also pub-
lished in the flagship computer vision conference, i.e., CVPR, in the
same year as [68,73]. Comparisons are firstly made among
[14,68,69,73], and the proposed method on the blurred images in
Figs. 10–23. The deblurred images by [68,69] corresponding to
the blurry images in Figs. 10–23 are provided in Fig. 25, and those
corresponding to the blurry images in Figs. 15–19 are provided in
Fig. 26. Since [14,68,69,73] are all fully end-to-end learning-based
schemes, there are no estimated blur kernel available. Apparently,
observed from Figs. 25 and 26 these deep-learning methods have



Fig. 27. Deblurring results on the real blurred images (spatially-invariant) corresponding to the four recent deep learning-based methods [14,68,70,73] and the proposed
approach (Ours).
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almost completely failed in removing the blur except the first and
third images (i.e., ‘outdoor’ and ‘cairo1979’) in Fig. 25, where
[14,68,69,73] generate comparable deblurred results to our pro-
posed method. As for the end-to-end learning-based method in
[70], it is not open-sourced while the authors kindly prepare for
us the deblurring results corresponding to 15 real blurred images.
They are also part of the 100 real images provided in Lai et al. [2].
But, compared with the blurry images in Figs. 10–23 the complex-
ity of blur patterns or trajectories in those 15 images is much less.
Actually, most of them are undergone small-scale out-of-focus or
linear motion blurs, while most of the blurry images in Figs. 10–
23 are undergone complicated middle or large-scale curvilinear
motion blurs. For the sake of clearness, the 15 deblurred images
estimated by [70] as well as [14,68,73] and our method are shown
in Fig. 27 (mainly spatially invariant blur) and Fig. 28 (mainly spa-
tially variant blur). It is clearly seen from both Figs. 27 and 28 that,
the proposed approach has achieved fairly comparable perfor-
mance to [14,68,70,73] on most of those blurred images, except
the first spatially variant blurry image in Fig. 28 where
[14,68,70,73] could generate clearer results than ours in the upper
left corner of the image. However, we should note that the pro-
posed method is not specifically made adaptive to spatially variant
blurs. Therefore, according to above comparisons it can be con-
cluded that the proposed approach is not only more effective but
also more robust than state-of-the-art deep learning-based meth-
ods [14,68,69,70,73], particularly as for images undergone compli-
cated curvilinear motion blurs, no matter they are of natural,
manmade, people or low-illumination or text types.

6. Conclusion

Blind image deblurring, as a fundamental low-level vision prob-
lem, is far from being solved due to the challenging blur process in
practical imaging, e.g., Gaussian-shaped kernels of varying sizes,
ellipse-shaped kernels of varying orientations, curvilinear kernels
of varying trajectories. It is comforting that in the past decade a



Fig. 28. Deblurring results on the real blurred images (spatially-variant) corresponding to the four recent deep learning-based methods [14,68,70,73] and the proposed
approach (Ours).
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great progress has been made wherein the most representative is
the recent breakthrough work by Pan et al. [3] which is a lifting
version of their previous work in Pan et al. [38]. In distinction to
the previous methods, this paper is inspired by a rule of work from
Albert Einstein: Out of clutter find simplicity, aiming to exploit the
full potential of gradient-based approaches with the new proposal
of a simple, robust yet discriminative prior for nonparametric blur
kernel estimation.

Our research finds that the success of blind image deblurring
requires dual principles of discriminativeness (DPD), which for-
mally leads to a simple gradient-based spatially variant heavy-
tailed prior. Numerous experimental results are provided to vali-
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date the effectiveness of the new prior along with comparisons
against state-of-the-art approaches on both synthetic and real
blurred images in different scenarios, e.g., natural, manmade,
low-illumination, text, people. We are convinced that the proposed
method is indeed a promising new candidate solution for blind
image deconvolution in spite of its simplicity in modeling. In par-
ticular, the results on the 100 real blurred images demonstrate
well that our approach is not only more robust than most of the
previous approaches but is also much comparable to Pan et al.
[3] and Pan et al. [38] both of which are not discriminative as a
whole and required to apply the additional continuation trick.

To briefly sum up, our new discriminative approach achieves
decent performance on both synthetic and realistic blurry images,
and could be served as a new start point to develop more reliable,
robust, effective and efficient blind deblurring approaches. Consid-
ering that the current end-to-end deep learning-based methods
cannot produce state-of-the-art deblurring results, we are to newly
propose a fast blind deblurring paradigm via embedding discrimi-
native deep edge-aware filters into the proposed regularization
framework.
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