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Abstract. This paper aims to exploit the full potential of gradient-based
methods, attempting to explore a simple, robust yet discriminative image prior
for blind deblurring. The specific contributions are three-fold: Above all, a pure
gradient-based heavy-tailed model is proposed as a generalized integration of
the normalized sparsity and the relative total variation. On the second, a plug-
and-play algorithm is deduced to alternatively estimate the intermediate sharp
image and the nonparametric blur kernel. With the numerical scheme, image
estimation is simplified to an image smoothing problem. Lastly, a great many
experiments are performed accompanied with comparisons with state-of-the-art
approaches on synthetic benchmark datasets and real blurry images in various
scenarios. The experimental results show well the effectiveness and robustness
of the proposed method.
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1 Introduction

Undergone a few years of exploration since the daring work of Fergus et al. [1] for
blind image deblurring, unnatural image models have been predominating the blind
deblurring literature until now. On this line, the first inspiring try is harnessing the
normalized sparsity measure in [4] with the idea that the image prior should favor a
sharp image to its blurry one. Nevertheless, the method cannot produce state-of-the-art
performance on this or that benchmark dataset, let alone blurry images in the wild [2].
The normalized sparsity is mathematically an approximation of the LO-norm in
essence, indicating that the salient edges matter a bit more than the faint textures to the
final success of blind deconvolution for natural images. In fact, unnatural image priors
are not only requested in the MAP framework but also advocated in the VB case in
spite of its more robustness in posterior inference. For example, another work by the
authors of the present paper has proposed to determine priors for blind image
deblurring as a self-learning problem [6] in the VB framework. The results show that
the learned model resembles in a sense the non-informative Jeffreys prior, whose
negative-logarithm is of course a new approximation to the LO-based model. Instead of
approximating the LO-norm with diverse strategies, a pure LO-based image prior was
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firstly proposed in [7] for blind deblurring. However, they are found not generalized
well to the large blur especially in specific imaging scenarios, e.g., face, text, or low-
illumination images. In [8] a new LO-norm-based intensity and gradient prior is pre-
sented for deblurring of the specific text images. Furthermore, an exemplar-driven
method with LO-norm-based regularization on image gradients is proposed in [9] for
face image deblurring.

In the blind deblurring field, the comforting thing is that numerous algorithms have
been put forward in the past decade, which achieve better and better performance on
one or another synthetic dataset. However, as claimed in [2] the performance of early
methods on the benchmark datasets is generally found inferior to that on those real
blurred images. In other words, those methods are far from being practical in terms of
the restoration quality. Actually a real breakthrough for blind deblurring is just made
very recently in [3] which combines the LO-regularized sparsity of both the image
gradient and dark channel. The experimental results prove its superior performance to
all the representative methods in the past decade as studied in [2]. Note that, although
the LO-based dark channel prior is discriminative as desired, the whole composite
sparse model of [3] is not necessarily so. Besides, it can be actually thought of as a
smart generalization over [8] and therefore is not a pure gradient-based method.

In spite of the recent great progress in this field, this paper aims to formulate the
blind problem with a simper modeling perspective. What is more important, the newly
proposed approach is expected to achieve comparative or even better performance
towards the real blurred images. Specifically, the core innovation idea is the proposal of
a pure gradient-based discriminative prior for accurate and robust blur kernel estima-
tion. Experimental results on both benchmark datasets and real-world images in various
imaging scenarios, e.g., natural, manmade, low-illumination, text, or people, demon-
strate well the effectiveness and robustness of the proposed method.

2 A Plug-and-Play Approach to Gradient-Based
Discriminative Blind Deconvolution

2.1 Gradient-Based Discriminative Prior

Our discussion begins with the first daring attempt towards discriminative image mod-
eling for blind image deconvolution, i.e., the normalized sparsity [4]. As indicated in [2,
3], its discriminativeness and effectiveness is, however, questionable in both synthetic and
practical experiments. Discriminativeness generally guarantees that the optimum should
be not the pair of blurred image and delta kernel. While, the effectiveness means that image
details such as the textures should be removed from the intermediate sharp image for
accurate kernel estimation, as being validated in existing methods [7, 10, 11].

Taking above two factors into consideration, a new candidate prior for blind image
deconvolution is presented as

R(u) = pr)‘sp(“) : |6xup}“ + pryvp(“) ’ |8y“p|17 (1)
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where u is a sharp image, p € Q(u) a pixel index, and o a positive value far less than 1,
0 a derivative operator, @, ,(u) a positive value related to pixel index and derivative
direction. It is not hard to deduce that the core novelty of the prior R(u) should be in
the definition of @ which embodies the demanded discriminativeness and effectiveness
for plausible intermediate image update.

We find that the requested discriminativeness can be naively achieved by adapting
the simple normalized sparsity [4], while the effectiveness of accurate intermediate
image update can be further ensured by adapting the relative total variation [5]. Then,
we could simply express R(u) as a gradient-based composite image prior. Specifically,
@, (1), 0 € {x,y} is defined as

1—1t t

wo«,{’(u) = (Do(u))ﬁ +¢ + (S So (P))ﬁ +87

S] (2)

where [ is a positive power, ¢ is a value between 0 and 1, ¢ is a small positive number to
avoid division by zero, and D,(u) and S,(p) are expressed respectively as

1/2
Do) = (3 g Outol) = Nl ®)

: (4)
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where Q(p) is the rectangular field centered at pixel p, and ¢, 4 is defined according to
the spatial affinity as a distance function of Gaussianity, i.e.,

¢, , o< exp (— (p = %) + (9 — yq)2>
p,q )

202

where ¢ is a spatial scale to be specified in implementation. We should claim that S, (p)
was originally proposed in [5] for image filtering and manipulation, whose value in a
window just with textures is found statistically smaller than that in a window also
containing structural edges.

Let’s dive into (1) and (2) for more details. One finding is that,

2p|8xup|“/(Dx(u))ﬁ—|—Ep\8yup|“/(Dy(u))ﬁ rises a primary function on discrimi-
nating sharp images from blurred ones as proper settings are provided to o, ff. It is

apparent that the above regularization term will degenerate to the normalized sparsity
[4] as o, f§ are equal to 1. Another finding is that, the performance of above regular-

ization term can be further boosted via Zp|8xu,,|“/(5x(p))ﬁ + ZP|8yu,,|“/(Sy(p))ﬁ.

The reason is that it is able to remove the interfering textures while making the salient
structures stand out more accurately in the intermediate sharp image. Such additional
amending is proved very critical to the high quality blind deconvolution in spite that the
amending strength governed by the parameter ¢ is relatively less. A large amount of
experiments demonstrate that ¢ set as 0.05 satisfactorily serves the plug-and-play
algorithm deduced in the following subsection.
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2.2 A Plug-and-Play Numerical Scheme to Blind Deconvolution

As the blur is assumed spatially-invariant, the blurred image observation process can be
described as

g=kxu+n, (5)

where u denotes the latent sharp image, g the captured blurry image, k the blur kernel
corresponding to the camera shake or out-of-focus, and n the possible random noise. It
is known that blind image deconvolution is mathematically ill-posed because there are
infinite solution pairs (#, k) satisfying the formulation (5). Therefore, appropriate
regularization should be imposed on both the image u and the kernel %.

Harnessing the proposed model (1), a MAP-based objective function for blind
deblurring can be expressed as

T (u, k)2 lg =k ully + AR () + ||k, (6)

where 4 and 7 are the two positive adjusting parameters. The first quadratic term is for
the image fidelity, while the third term is a Tikhonov regularization on the blur kernel
k. Note that, the formulation (6) works free of any ad-hoc modeling tricks, e.g., con-
tinuation, or additional image processing operations such as bilateral smoothing or
shock filtering. In consequence, the blind deconvolution performance of the proposed
algorithm will be overwhelmingly determined by the discriminative image prior (1),
considering that the Tikhonov penalty on the blur kernel is a standard configuration in a
large majority of existing methods. This paper sets the tuning parameter 1 as 2.

Now, the image and the kernel can be obtained by solving the joint minimization
problem (i1, k) = arg min, ; 7 (u, k) in an alternatingly iterative manner. Provided the
(i — Dyth iterative solution of k=1, u) and k) are then respectively solved by u) =
argmin,, 7 (u, k") and k) = arg min; 7 (u?), k).

In this paper, the half-quadratic regularization strategy is used to estimate u) via
decomposing the original minimization problem into two simper sub-problems. An
auxiliary variable is firstly introduced corresponding to u, i.e., let u = z, and then a new
objective function can be obtained as

T (1, 2, KDY 2 |lg — K00 s ]2 4 AR (2) + pllue — 2|2,

whose minimizing solution, i.e., the intermediate sharp image, approaches that of

J(u, k=1 as p is close to infinity. In each alternative minimization over u and z, it is
obvious that u can be efficiently gained via use of fast Fourier transform (FFT) in a
closed form solution. That is,

= ()

L [ F(KED)F(g) + pF(2)
FREDFEED) +p )
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where F and F represent the FFT and its complex conjugate, respectively, and F !
represent the operation of inverse FFT. Besides, as usual z is initialized to be a zero
image. Given u, z is numerically computed by minimizing the sub-problem

e — 22+ %R@. (®)

Apparently, solving (8) actually amounts to an amendatory step of image
smoothing regularized by (1) and is implemented via the reweighted least squares
approximation [5]. In this perspective, the intermediate sharp image estimation falls
into a plug-and-play framework seminally proposed in [12, 13]. To the very best of our
knowledge, this paper is the first to apply the plug-and-play idea for blind image
deconvolution via use of a specifically customized discriminative prior.

With an estimated intermediate image u”, blur kernel k) can be produced by
solving the Tikhonov-based energy functional k) = arg min; J (um,k). In spite of
that, a slightly modified functional defined in the gradient domain as commonly
practiced in blind deblurring [3, 19] is used for better estimation. That is,

3 :argminkHVg—k*Vu@Hi-H’IHk“; ©)

wherein k) can be solved very efficiently in a closed-form via FFT in exactly the same
way as updating the image  in (7). One more point to be noted is that, blur kernel k(¥
should be projected onto the set C={k>0,3 > |k, =1} considering the
physical property of blur kernels.

3 Experimental Results

This section validates the proposed approach on the datasets proposed by Lai et al. [2]
with comparisons against the current representative blind deblurring algorithms: [1, 7,
10, 11, 14-19]. Besides the PSNR, the SSIM in [20] and the no-reference metric in [21]
are also harnessed for quantitative assessment of different methods in this part. Note
that, [21] is specifically proposed to evaluate the motion deblurring quality which is
consistent with human feelings and ratings to a certain degree.

The datasets in Lai et al. [2] include a synthetic one consist of 100 blurred images
generated by 4 blur kernels shown in Fig. 1 and 25 true clear images divided into 5
categories, i.e., natural (N), manmade (M), text (T), people (P), and saturated (S), as
well as a real one containing 100 blurred color images collected from either previous
deblurring works, or Flicker and Google Search, or those captured by the authors
themselves, which also fall into the above five categories.
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kernel04

kernel02 kernel03

kernel01

Fig. 1. Blur kernels with different sizes used for generating the 100 synthetic blurry images in
Lai et al. [2].

3.1 Synthetic Experiment Results

Tables 1, 2, 3, and 4 list the average statistics of the three metrics for the deblurred
images corresponding to each of the blur kernels in Fig. 1. In every table, each row
represents the average evaluation across the five image categories, i.e., N, M, T, P, S. It
is seen that the overall performance of our approach ranks the first in almost all
scenarios in terms of either PSNR, or SSIM, or no-reference metric, proving its
effectiveness and robustness in dealing with various kinds of blurred images with
different kernel sizes.

Table 1. Average statistics of PSNR (dB), SSIM [20], and no-reference (no-ref.) metric [21] of
the final deblurred images corresponding to each blind deblurring approach on the 25 blurred
images generated by kernel01 (31 x 31) in the dataset of Lai et al. [2]. Red denotes the best,
blue the second, and green the third.

Metric (1] [10] [11] [14] [15] [16] 7 [17] [18] [19] Ours
PSNR 16.66 19.07 22.64 19.45 18.95 22.26 22.11 21.25 21.44 21.28 23.47
SSIM 0.5429 0.6846 0.8346 0.7287 0.6576 0.8181 0.8102 0.7826 0.7774 0.8191 0.8880
No-ref. -18.05 -11.94 -10.43 -11.23 -13.91 -10.53 -10.82 -11.30 -10.81 -10.87 -10.28

Table 2. Average statistics of PSNR (dB), SSIM, and no-reference (no-ref.) metric of the final
deblurred images corresponding to each blind deblurring approach on the 25 blurred images
generated by kernel02 (51 x 51) in the dataset of Lai et al. [2]. Red denotes the best, blue the
second, and green the third.

Metric [ [10] [11 [14] [15] [16] 7 [17] [18] [19] Ours
PSNR 15.67 17.65 21.65 18.77 17.59 21.05 20.96 18.58 19.33 18.13 21.92
SSIM 0.4606 0.5892 0.8096 0.6812 0.5183 0.7658 0.7765 0.6172 0.6547 0.6460 0.8322
No-ref. -18.02 -13.00 -11.64 -12.29 -14.75 -11.38 -12.10 -12.21 -11.73 -12.86 -11.27
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Table 3. Average statistics of PSNR (dB), SSIM [20], and no-reference (no-ref.) metric [21] of
the final deblurred images corresponding to each blind deblurring approach on the 25 blurred
images generated by kernel03 (55 x 55) in the dataset of Lai et al. [2]. Red denotes the best,
blue the second, and green the third.

Metric [] [25] [26] [19] [17] [41] [27] [65] [40] 23] | Ours
PSNR 15.25 18.06 20.95 18.95 17.39 21.20 19.96 19.21 18.90 19.15 21.87
SSIM 0.4571 0.6251 0.7739 0.6923 0.5402 0.7948 0.7185 0.6802 0.6470 0.7295 0.8419
No-ref. -17.96 -12.61 -11.05 -11.73 -14.24 -11.22 -12.07 -12.21 -11.31 -12.30 -10.91

Table 4. Average statistics of PSNR (dB), SSIM [20], and no-reference (no-ref.) metric [21] of
the final deblurred images corresponding to each blind deblurring approach on the 25 blurred
images generated by kernel04 (75 x 75) in the dataset of Lai et al. [2]. Red denotes the best,
blue the second, and green the third.

Metric [1] [10] [11] [14] [15] [16] [7] [17] [18] [19] Ours
PSNR | 1431 15.19 17.71 16.78 15.56 17.81 16.64 16.59 16.00 18.27 19.13

SSIM | 03346 | 04383 | 0.6128 | 0.5614 | 03988 | 0.5844 | 0.5736 | 0.4994 | 0.4473 | 0.6474 | 0.6969
No-ref. | 2057 | -1632 | -16.07 | -1423 | -14.04 | -13.34 | -1822 | -1436 | -11.70 | -1449 | -13.82

We note an exception that in terms of the no-reference metric [21], our approach
seems perform slightly inferior to [18] and [16] as dealing with images convolved by
kernel04, as shown in Table 4. However this objective evaluation does not comply
with the practical visual perception and the comparison should be more based on the
PSNR and SSIM in this situation. A notable instance can be observed from Fig. 2,
where our approach has produced a blur kernel of very high precision and therefore a
reasonably good deblurred image. It is found that, however, it only ranks the last
among the eight compared methods in terms of no-reference metric. In fact, all the
other approaches completely fail in this example. Thus, the visual comparisons show
that, to some extent [21] is not applicable for fairly measuring the saturated image
deblurring quality. Therefore, in this case PSNR and SSIM should be more relied on
for fair assessment of various algorithms. In brief, the comprehensive evaluation shows
that our approach performs comparatively or better in all the five blur scenarios.

3.2 Realistic Experiment Results

Since there is not a reliable quantitative metric of measuring the deblurring quality for
the real, comparisons are made merely based on our visual perception. In this part, the
practical performance of the recent breakthrough work [3] is also tested.

The comprehensive assessment validates that the proposed method is more robust
than most of the compared approaches in Subsect. 3.1, which achieves comparative (N,
M, P) or better (T, S) performance on the whole set of 100 real images. In the
meanwhile, it is found that our approach performs much comparatively to [3] and [38]
on the five categories of blurred images, particularly on those text and saturated ones.
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Fig. 2. Deblurring results of the blurred image textO4-kernel04 in the dataset Lai et al. [2]
corresponding to the top eight approaches in terms of PSNR/SSIM. The value of no-reference
metric [67] is shown in each image for visual perception assessment. Their PSNR/SSIM values
are respectively [17] (13.63 dB/0.5611), [18] (13.72 dB/0.5634), [15] (13.74 dB/0.5605), [14]
(13.83 dB/0.5903), [11] (13.91 dB/0.5724), [7] ((14.03dB / 0.6386)), [19] ((16.30dB / 0.7166)), Ours
((21.43dB / 0.8437)).

Considering the restricted paper space, we just take three challenging images for
example. Figures 3, 4, and 5 provide the deblurred results for three blurred images for
visual perception. It is seen that the proposed method, [3, 8] can produce plausible
kernels in most cases. Most of the kernels are with tiny differences, which naturally
lead to visually similar and acceptable deblur images. Nevertheless, other approaches
just get occasional success on those challenging experiments.

Fig. 3. Results for the manmade (M) image ‘postcard’ corresponding to the methods [3, 7, 8,
19] and ours with reasonable kernels produced.
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Blurred

Fig. 4. Results for the text (T) image ‘text2’ corresponding to the methods [3, 7, 8, 16] and Ours
with reasonable kernels produced.

Blurred

Fig. 5. Results for the saturated (S) image ‘car5’ corresponding to the methods [3, 8] and ours
with reasonable kernels produced.

Blurred

Blurred

Fig. 6. Visual comparison among [3, 8], and the proposed approach on the two saturated
(S) images ‘garden’ and ‘sydney_opera’ where both [3, 8] have completely failed to a great
degree while the proposed approach succeeds in producing very reasonable kernels which
naturally lead to visually acceptable deblurred images.
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In spite of similar deblurring performance among [3, 8] and our approach on the
above blurred images, as for two saturated images ‘garden’ and ‘sydney_opera’, both
[3, 8] have completely failed to a great degree. However, our method succeeds to
recover a very plausible blur kernel for each image. Figure 6 provides the deblurring
results for the three methods. Meanwhile, we observe several examples including:
‘card’, ‘nightl’, ‘night4’, ‘notredame’, ‘textl’, and ‘text12’, where either [8] or [3] or
occasionally both generate much less accurate kernels than those of our approach.

4 Conclusion

Blind image deblurring, as a fundamental low-level vision problem, is far from being
solved due to the challenging blur process in practical imaging, e.g., Gaussian-shaped
kernels of varying sizes, ellipse-shaped kernels of varying orientations, curvilinear
kernels of varying trajectories. In distinction to the previous methods, this paper is
inspired by a rule of work from Albert Einstein: Out of clutter find simplicity, aiming to
exploit the full potential of gradient-based approaches with the new proposal of a
simple, robust yet discriminative prior for nonparametric blur kernel estimation. Our
new discriminative approach achieves decent performance on both synthetic and
realistic blurry images, and could be served as a new start point to develop more
reliable, robust, effective and efficient blind image deblurring approaches.
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