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ABSTRACT   

This paper proposes a new variational model for deblurring low-resolution images, a.k.a. single image nonparametric 
blind super-resolution. In specific, a type of new adaptive heavy-tailed image priors are presented incorporating both the 
model discriminativeness and effectiveness of salient edge pursuit for accurate and reliable blur kernel estimation. With 
the assistance of appropriate non-blind super-resolution approaches, nonparametric blind super-resolution can be cast as 
a regularized functional minimization problem. An efficient numerical algorithm is derived by harnessing the alternating 
direction method of multipliers as well as the conjugate gradient method, with which alternatingly iterative estimations 
for kernel and image are finally implemented in a multi-scale manner. Numerous experiments are conducted along with 
comparisons made among the proposed approach and two recent state-of-the-art ones, demonstrating that the proposed 
approach is able to better deal with low-resolution images which are blurred by various possible kernels, e.g., Gaussian-
shaped kernels of varying sizes, ellipse-shaped kernels of varying orientations, curvilinear kernels of varying trajectories.  

Keywords: Super-resolution, blind deconvolution, camera shake deblurring, normalized sparsity, relative total variation. 
 

1. INTRODUCTION  
As a fundamental image restoration task, single-frame super-resolution (SISR) has undergone a rapid development 

since the pioneering work by Freeman and Pasztor [1] and Baker and Kanade [2]. Several comprehensive surveys [3, 4, 
5, 6] present detailed elaborations, comparisons, and also comments on the super-resolution algorithms up to 2013, 
wherein it is noted clearly that the learning-based strategies manifest more and more potentialities in terms of both 
accuracy and efficiency, as compared to the more popular variational methods in the scenario of multi-frame super-
resolution. The basic idea of learning-based SISR approaches is to learn a single or multiple mappings between the low-
res (LR) and high-res (HR) domains by harnessing a large set of training image pairs, where every HR training image is 
blurred by a supposed bicubic or Gaussian kernel. The representative learning-based single image super-resolution 
(SISR) approaches essentially originate from three kinds of machine learning methodologies, i.e., manifold learning, 
sparse learning, and deep learning, based on which four types of SISR algorithms are summarized as follows: 
neighborhood embedding  [7, 8], coupled dictionary learning [9, 10], locally-linear regression [11, 12], and 
convolutional neural networks [13, 14]. 

Though SISR has earned intensive attention in the past two decades, a careful inspection reveals that there exists a 
common assumption in the current literature, namely, the high-res image is blurred by a supposed bicubic or Gaussian 
blur kernel with a known standard deviation. And actually, most of existing learning-based approaches use the bicubic 
low-pass filter (implemented via MATLAB’s default function imresize) to generate the LR-HR training pairs. We note 
that apparently the parametric assumption on the form of blur kernels does not hold in most practical applications, as in 
real LR imaging an HR image would be generally undergone a complicated blur process, e.g., Gaussian-shaped kernels 
of varying sizes, ellipse-shaped kernels of varying orientations, curvilinear kernels of varying trajectories. According to 
literature review, only few works have addressed estimating an accurate blur kernel within the scenario of SISR. Among 
few such contributions, a parametric model is usually assumed and the Gaussian is a common choice. However, as the 

Tenth International Conference on Graphics and Image Processing (ICGIP 2018), edited by 
Chunming Li, Hui Yu, Zhigeng Pan, Yifei Pu, Proc. of SPIE Vol. 11069, 1106919 

© 2019 SPIE · CCC code: 0277-786X/19/$18 · doi: 10.1117/12.2524365

Proc. of SPIE Vol. 11069  1106919-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 16 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



assumption does not coincide with the actual blur model. To the best of our knowledge, the first daring attempt towards 
nonparametric blur kernel estimation for single image SR is made in [15] and its problem solution also applies to blind 
image deblurring. However, it restricts its treatment to single peak blur kernels and does not originate from a rigorous 
optimization principle but relies on empirical detection and prediction of step edges as important clues to blur kernel 
estimation. A second noteworthy work for nonparametric blind SR is the one by Michaeli and Irani [16] whose essential 
idea is to harness the recurrence property of natural image patches across different scales. It should be noted that the 
performance of this approach relies heavily on the searched nearest neighbors to the query patches in the input blurred, 
low-res image. In the meanwhile, as claimed in [17] the nonparametric blind SR approach [16] cannot be naively 
applicable to blind image deblurring. Taking into account the similarity between blind deconvolution and blind SR in 
terms of nonparametric blur kernel estimation, the first author of the present paper and his collaborator recently propose 
to formulate both blind problems in a common modeling viewpoint [18, 19], i.e., bi-L0-L2-norm regularization. Although 
the endeavor being made in [18] is preliminary, it brings us an enlightenment that the gap between two blind restoration 
problems can be narrowed to a certain degree. 

In this paper, we build on our preliminary work in [18] while taking a step further. Specifically, we develop a novel 
ADMM method for nonparametric blind SR by proposing a type of Lα-norm based adaptive heavy-tailed image priors,  to 
some extent, which can be expressed and understood as a generalized integration of the previous normalized sparsity 
measure and relative total variation. Combining the adaptive priors and the convolutional consistency constraint (CCC) as 
advocated in [18], an intermediate high-res image of higher quality becomes possible and hence more accurate blur kernel 
estimation can be achieved for the nonparametric blind SR task. As for minimization of the resulting functional, an 
ADMM-based iterative algorithm is derived for estimating the intermediate high-res image and nonparametric blur kernel 
alternatingly, during which the conjugate gradient algorithm is exploited for running efficiency. A great many experiments 
are performed on both synthetic and real-world blurred low-res images, demonstrating the comparative or even superior 
performance of the proposed method convincingly. An empirical study is also made towards appropriate choice of existing 
SISR algorithms for the convolutional consistency constraint, and the candidates are from the four categories of learning-
based SISR methods mentioned above, considering their inbred advantages in terms of both accuracy and efficiency. It is 
not surprised that the empirical observation conforms to that in [18], i.e., ANR (anchored neighborhood regression) [11] is 
shown a more robust engine for our purpose than other candidates including the those deep learning-based methodology. 

 

2. PROPOSED SPATIALLY ADAPTIVE HEAVY-TAILED PRIORS 
Considering both the modeling effectiveness and computational efficiency, a type of new heavy-tailed image priors are 

proposed to regularize the blur kernel estimation process, expressed as 

                                                     { }, ,( ) ( ) ( )x p x p y p y ppp u exp u u u uα αγ γ∈Ω − −∝ ⋅ ∂ ⋅ ∂∏                                                   (1) 

where p ∈ Ω  denotes a pixel index in the region Ω , 0 1α< ≤  amounts to imposing the Lα-norm based regularization 
on images, , ( )x p uγ  and , ( )y p uγ  are the spatially adaptive weights defined for each image pixel in the horizontal and 
vertical directions, embodying one of our core contributions in this paper. On one hand, ( )p u  as in (1) is expected 
potentially discriminative so as to ensure the success of blur kernel estimation, i.e., sharp high-res images should be 
favored rather than their blurred counterparts and then the delta kernel can be avoided. On the other hand, ( )p u  as in (1) 
is expected ease of fast iterative computations of the nonparametric blur kernel and itermediate sharp image. Hence, in 
order to boost the discriminativeness of normalized sparsity measure and more importantly its real performance in kernel 
estimation, in the proposed heavy-tailed priors the spatially adaptive weight ( ),  { , }o pu o x yγ ∈  is presented as  
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where ( )0, 1ϖ ∈ , ε  is a small positive value to avoid division by zero, and ( ),o uG ( )o pdL  are defined, respectively, as 
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where ( )uΩ  denotes the entire image field, ( )pN  is a rectangular region centered at the pixel p, and , p qφ  is defined 
according to the spatial affinity as a distance function of Gaussianity, i.e., 

2 2
, 
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where σ  is a spatial scale to be specified in implementation. 

Let us dive into (1) and (2) for more details on the modeling properties of the proposed heavy-tailed priors. To make 
the analysis clearer, we study the negative logarithm of ( )p u  which is denoted as   

( ) log ( ) ( ) ( )p x p x p y p y pu p u u u u u
α α

γ γ∈Ω∂ − = ⋅ ∂ ⋅ ∂+@R ∑                               (6) 

That is, ( )u∂R  can be viewed as the deterministic regularization on the image u . We note that the terms ( )o uG  and 
( )o pL  were previously exploited in [20] and [21], respectively. Particularly, when α  is set as 1, the proposed 

regualrization (6) will degenerate to the normalized sparsity measure upon ϖ  specified as 0, while to the relative total 
variation (RTV) upon ϖ  specified as 1. Hence, (6) is actually a gradient-based composite model specifically designed 
for blur kernel estimation. We should also note that RTV is originally proposed for structure-preserving image filtering 
and manipulation, whose value in a window just containing textures is statistically found smaller than that in a window 
also including structural edges. To the best of our knowledge, none of existing works exploits RTV as a regualrization 
term for nonparametric blind SISR. Therefore, it can be intuitively concluded that the core idea of the proposed prior is 
to amend the generalized normalized sparsity measure | | | |( ) ( )p x p x p y p yu u u uα α

∈Ω ∂ ∂+∑ ∑G G  by the additional 
generalized RTV | | | |( ) ( ) ,p x p x p y p yu p u pα α

∈Ω ∂ ∂+∑ ∑L L  in the sense that a higher quality intermediate sharp 
image with interfering details/textures removed is to be produced as a core assurance to the kernel estimation precision. 
Experimental results along with empirical anaysis are to be provided in Section 4 for better understanding the coupling 
superiority of the proposed model. 
 

3. VARIATIONAL BLIND SUPER-RESOLUTION: FORMULATION AND ALGORITHM 
Let g  be the vector form of the low-res image o with size N1×N2, and u  the vector form of the corresponding high-

res image u with size sN1×sN2, where s > 1 is an upsampling factor. Then, the relation between g  and u  can be 
expressed into two equivalent matrix-vector forms  

= +  g DKu n    
  or    

 
 = +  g DUk n                                                         (7) 

where U  and K  are assumed two BCCB (block-circulant with circulant blocks) convolution matrices corresponding to 
the vectorized high-res image u  and blur kernel k , and D  denotes a down-sampling matrix, and n  is the possible zero-
mean white Gaussian noise. Note that, in implementation image boundaries are smoothed in order to supress the border 
artifacts, just the same as in [18]. Then, our task is to infer u  and k  provided only the low-res image g  and the up-
sampling factor s. As emphasized above, our adaptive heavy-tailed priors are unnatural since faint details/textures are to 
be smeared out among the blur kernel estimation. Hence the nonparametric blind SR task is divided into wo independent 
stages, i.e., (a) alternatingly estimating the nonparametric blur kernel k  and the intermediate high-res image u  using the 
derived numerical scheme to be specified in the following; (b) estimating the final sharp high-res image with a state-of-
the-art non-blind SR method. 

As demonstrated in [18], the accuracy of blur kernel estimation for the blind SR task is also affected by the jagging 
artifacts along the salient edge structures except for the interfering details/ textures. Then, the complete formulation for 
alternatingly estimating the nonparametric blur kernel k  and the intermediate high-res image u  can be given as 

2 2 0.5

2 2 0.5,
 ˆˆ arg min ( )2 2, βη λ= − + + − +   

u k
u k g DKu u  u K u k(R ∇                                                      

 (8) 

where , ,η βλ  are positive tuning parameters, ( )∇uR  is the vectorized form of the regularization term ( )u∂R , 
[ ; ],x yu u u@∇ ∇ ∇  where 1 21 2[ , , ..., ]Tx x x x sN sN×= ∂ ∂ ∂u u u u∇ , 1 21 2 ,[ , , ..., ]Ty y y y sN sN×= ∂ ∂ ∂u u u u∇ and ,x y∇ ∇  are the 

convolutional matrices corresponding to the partial derivative operators ,x y∂ ∂ , and the last term is the L0.5-norm based 
regularization imposed on the blur kernel k which is an empirical choice just similar to the conventional practice made in 
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the blind deblurring community. To be noted that  ( )u∇R  is responsible for pursing the accurate salient edges as core 
clues to kernel estimation, which, however, cannot be achieved without the third term 2

2|| ||−  u Ku(  due to the very 
possible jagging artifacts emerged in the naïve upsampling process, which is named the convolutional consistency 
constraint (CCC) in our previous blind SR work [18]. The rationale in the CCC is that using an appropriate learning-
based SR model which is generated with a bicubic kernel, the super-resolved blurred image u(  approximately satisfies 
the relation ≈ K u u( . To gain the idea of the proposed formulation (8) intuitively, four representative learning-based 
non-blind SR models are experimented, including: neighborhood embedding (NE) [8], joint sparse coding (JSC) [10], 
anchored neighborhood regression (ANR) [11], and deep convolutional network (DCN) [13], in consideration of their 
inbred advantages in terms of both accuracy and efficiency.  

In Figure 1, a low-res version of a high-res image “bird” is provided, which is blurred by a 19×19 Gaussian kernel 
with standard deviation 2.5 and down-sampled by a factor 3. Note that in estimation the proposed approach is blind to 
the blur kernel shape, size, and standard deviation, and hence we just assume the kernel size as 31×31 which is normally 
large enough for the blind SR problem. The true blur kernel is also presented in the first column of Figure 1 
accompanied with the the original high-res image “bird”. The remaining columns provide the SR results by those non-
blind learning-based approaches as above and our proposed blind method boosted by each of them respectively. For 
example, the second column shows two super-resolved images via ANR [11] and our method boosted by ANR as 
formulated in (8), simply denoted as Blind-ANR for convenience of description. It is seen that the outputs of four non-
blind SR methods [11, 13, 10, 8] are all blurry images while our blind approach is able to generate visually clear images. 
The metric PSNR, i.e., peak signal-to-noise ratio, is used to evaluate those non-blind and blind super-resolved images 
quantitatively. We also use the metric SSD, i.e., sum of squared difference [22], to quantify the error between the 
estimated blur kernel and its counterpart ground truth. It is apparent that the proposed Blind-ANR has achieved the best 
performance in terms of the image PSNR value in this example whose estimated blur kernel most resembles the ground 
truth in terms of the kernel SSD value.  

 

 
Figure 1. An illustrative example of the proposed approach to nonparametric blind SR harnessing advanced learning-based methods including: ANR 
[11], DCN [13], JSC [10], NE [8]. First row: low-res image g  and non-blind super-resolved images u( ; Second row: original high-res image u  and 
blind super-resolved images accompanied by the true and estimated blur kernels. The image PSNR and kernel SSD are calculated and provided for 
quantitative evaluation. The proposed Blind-ANR has achieved the best performance in terms of the image PSNR value in this example whose 
estimated blur kernel most resembles the ground truth in terms of the kernel SSD value.  

 

Furthermore, we provide another illustrative example in Figure 2 where the high-res image “alphabet table” is 
blurred by a nonparametric motion blur kernel with size 11×11 and down-sampled by a factor 2. We see that the 
proposed Blind-ANR outperforms Blind-DCN, Blind-JSC and Blind-NE by a large margin in terms of the image PSNR 
in this example, and that the four blind approaches have also overwhelmed their corresponding non-blind counterparts. 
In the meantime, it is conjectured from this example that the kernel metric SSD may be not absolutely fair for evaluating 
the performance of nonparametric blind SR approaches. In brief, above two examples demonstrate well the feasibility 
and effectiveness of our adaptive heavy-tailed image priors, and validate that the non-blind SR method ANR [11] can be 
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used as a more robust engine for our framework compared against several other candidates including the advanced deep 
learning-based methodology [13] which conforms to the empirical finding in [18]. 

 
Figure 2. An illustrative example of the proposed approach to nonparametric blind SR harnessing advanced learning-based methods including: ANR 
[11], DCN [13], JSC [10], NE [8]. First row: low-res image g  and non-blind super-resolved images u( ; Second row: original high-res image u  and 
blind super-resolved images accompanied by the true and estimated blur kernels. The image PSNR and kernel SSD are calculated and provided for 
quantitative evaluation. The proposed Blind-ANR has achieved the best performance in terms of the PSNR value in this example, however whose 
estimated blur kernel does not most resemble the ground truth in terms of the SSD value. Blind super-resolved images can be observed on the computer 
screen for better visual comparison.  
 

In this paper, we do not attempt to provide a rigorous theoretical analysis on the existence of a global minimizer of 
(8) or further make a claim regarding the convergence of the proposed numerical scheme. Instead, our concentration is 
on a practical numerical algorithm considering the blind nature of our problem. In the normal, the problem can be 
directly expressed as alternating minimization of (8), i.e., provided the (i-1)th iterative solutions of ( 1)i−u  and ( 1)i−k , 

( )iu  and ( )ik  can be obtained by respectively solving (9) and (10) as follows 
2 2

( ) ( 1) ( 1) ( 1)
2 2

 2 2arg min ( , )i i i iη βλ− − −= − + −+    

u
u g DK u u u u K u(R ∇                                     (9) 

2 2 0.5( ) ( ) ( )
0.52 2

 2 2arg mini i iη β= − + − +      

k
k g DU k u U k k(                                              (10) 

where 1 10,i I≤ ≤ =  ( 1)i − K  and ( )iU  are the convolution matrices corresponding to the estimates ( 1)i−k  and ( )iu , and 
( 1)( , )i−u u∇R  is an iterative version of ( )u∇R . We should note that our empirical experimentation suggests that the 

kernel update step can be better performed as implemented in the image derivative domain. Note that this has been also 
validated in [18] and several blind image deburring works such as [19, 20]. Therefore, (10) is modified as 

{ }( ) ( )
2 2 0.5( )

0.52 2{ , }
 2 2arg min i i

o o
i o o

o x y

η β
∈

= − + − +∑       

k
k g DU k u U k k(                                   (11) 

where ,o o=  g g∇  ,o o=  u u( (∇ ( )i
o U  denotes the convolutional matrix of the image gradient ( ) ( ).i ioo =  u u∇  Besides, ( )ik  

should be projected onto the constraint set  1{ 0, || || 1}= ≥ =k kC  because a blur kernel is non-negative and normalized. 

As minimizing the resulted functionals (9) and (11), an ADMM-based iterative algorithm is derived for estimating the 
intermediate high-res image and nonparametric blur kernel alternatingly, during which the conjugate gradient algorithm is 
exploited for running efficiency. Meanwhle, following the regular practice in blind image deconvolution, a multi-scale 
strategy is harnessed for the final algorithm so as to make our method applicable to large-scale blur kernel estimation and 
also avoid stuck into poor local minima when solving (9) and (11). The pseduo code of the final algorithm is summarized 
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as Algorithm 1. In each scale, the low-res image g  and the super-resolved blurry image u(  generated by ANR are 2 
times down-sampled successively as inputs to (9) and (11). In the finest scale the inputs are the original g and u(  
themselves. The initialized image for each scale is set as the down-sampled u( , and the initialized kernel is set as the 
bicubic up-sampled blur kernel estimated in the coarser scale (in the coarsest scale the initial kernel is simply set as the 
Dirac pulse). Furthermore, inspired by the blind deblurring literature a continuation scheme on the parameters , η β   is 
also applied for better performation. It is not hard to find that the main computational cost of the proposed approach is on 
the iterative estimates of ( 1) ( 1),  i i

jl
− −u k , which have been based on the CG algorithm due to the involved down-sampling 

operator in the low-res imaging model. With the estimated blur-kernel k̂ , the final high-res image is generated using the 
TV-based SR method [23]. 
 

Algorithm 1. Blur kernel estimation for nonparametric blind SR
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end while
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4. EXPERIMENTAL RESULTS 
Considering the fact that the work in [16] loses its stability for large kernels1, we restrict the size of unknown 

kernels to 19×19 universally across all the experiments in the following. Besides, both the bi-L0-L2-norm based blind SR 
method [18] and our approach in Algorithm 1 choose ANR [11] for obtaining the non-blind super-resolved image u( . To 
quantify the performance of different blur kernel estimation methods, values of PSNR and SSIM corresponding to each 
of the final super-resolved SR image are computed. As for the parameter settings of the proposed method, , , η λ β  are 
specified to be 0.01, 0.25, and 100, respectively. Another parameter is the balance coefficient ϖ  in the proposed heavy-
tailed image prior (1), which is found matter a lot to the estimation accuracy, and in this paper it is fixed to be 0.1. For 
the sake of description clarity, the work in [16] is named of Patch Recurrency and that in [18] is named of bi-L0-L2-norm. 

                                                 
1 In [16] blur-kernels are typically solved with size 9×9, 11×11 or 13×13 for various blind SR problems.  
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4.1 Super-resolving synthetic blurred low-res images 
In this group of experiments, each of the thirty test images from the Berkeley Segmentation Dataset as shown in 

Figure 3 is blurred by a 11×11 Gaussian kernel with standard variation 2.5, down-sampled with a factor 3, and degraded 
by a zero-mean white Gaussian noise with noise level 1. The average blur kernel SSD, image PSNR, and image SSIM 
corresponding to each of compared methods are provided in Table 1. We see that in this scenario the proposed approach 
has achieved comparable performance to [18] in terms of either kernel SSD or image SSIM and PSNR. It is also noticed 
that the Patch Recurrency method by Michaeli and Irani [16] can not generate state-of-the-art results in spite of their 
fresh ideas. For visual perception, the super-resolved images are provided in Figure 4 and 5 corresponding respectively 
to images with No. 10 and 13, where the intermediate images produced by the proposed method are also shown. Clearly, 
it is observed that the estimated blur kernels by [16] and the proposed method are more accurate than those by [16]. 

 
Figure 3. Thirty test images from the Berkeley Segmentation Dataset for nonparametric blind SR in the scenario of Gaussian blur. 

 

 
Figure 4. Super-resolved images along with values of SSIM and PSNR by ANR [11] (0.7025, 26.87 dB), Patch Recurrency [16] (0.7372, 28.66 dB), bi-

L0-L2-norm [18] (0.7408, 28.74 dB), and our approach (0.7406, 28.74 dB).  
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Figure 5. Super-resolved images along with values of SSIM and PSNR by ANR [11] (0.7025, 27.93 dB), Patch Recurrency [16] (0.7359, 29.42 dB), 

bi-L0-L2-norm [18] (0.7605, 30.94 dB), and our approach (0.7637, 31.11 dB). 

Table 1. Nonparametric blind SR in the scenario of Gaussian blur with average kernel SSD, image SSIM, and image PSNR provided corresponding to 
Patch Recurrency [16], bi-L0-L2-norm [18], and the proposed approach (Ours)   

Image  
No. 

[16] [18] Ours 
SSD SSIM PSNR SSD SSIM PSNR SSD SSIM PSNR 

1 0.0020 0.9327 33.62 0.0006 0.9521 36.04 0.0004 0.9537 36.20 
2 0.0017 0.7640 27.02 0.0003 0.8122 29.17 0.0005 0.8104 29.12 
3 0.0020 0.6178 26.26 0.0003 0.6587 27.29 0.0007 0.6550 27.20 
4 0.0034 0.8174 31.02 0.0004 0.8558 33.79 0.0003 0.8571 33.78 
5 0.0030 0.6273 24.92 0.0001 0.6975 27.60 0.0002 0.6975 27.68 
6 0.0062 0.6116 23.89 0.0007 0.6987 26.68 0.0002 0.6975 26.63 
7 0.0039 0.6449 24.36 0.0001 0.7023 26.71 0.0004 0.6994 26.63 
8 0.0062 0.7257 23.42 0.0001 0.7960 25.45 0.0004 0.7886 25.22 
9 0.0097 0.3411 17.75 0.0002 0.5351 21.26 0.0004 0.5283 21.20 
10 0.0005 0.7372 28.66 0.0003 0.7408 28.74 0.0002 0.7406 28.74 
11 0.0044 0.4915 24.66 0.0002 0.5531 27.20 0.0003 0.5539 27.21 
12 0.0061 0.5684 23.02 0.0002 0.6567 26.26 0.0002 0.6570 26.35 
13 0.0014 0.7359 29.42 0.0004 0.7605 30.94 0.0002 0.7637 31.11 
14 0.0014 0.4221 23.76 0.0001 0.4364 24.29 0.0003 0.4347 24.27 
15 0.0027 0.7490 28.06 0.0003 0.7819 29.51 0.0001 0.7840 29.63 
16 0.0016 0.8671 27.47 0.0007 0.9060 29.77 0.0002 0.9050 29.70 
17 0.0016 0.7680 28.92 0.0003 0.7872 29.80 0.0003 0.7874 29.71 
18 0.0033 0.8550 28.47 0.0001 0.9105 34.27 0.0001 0.9102 34.33 
19 0.0036 0.5810 24.46 0.0003 0.6542 28.24 0.0002 0.6551 28.23 
20 0.0026 0.4343 21.78 0.0001 0.4745 22.62 0.0006 0.4668 22.57 
21 0.0048 0.5150 20.65 0.0003 0.5347 21.01 0.0005 0.5336 21.00 
22 0.0032 0.7039 24.88 0.0001 0.7266 25.60 0.0003 0.7226 25.49 
23 0.0044 0.4607 22.83 0.0001 0.5324 24.99 0.0003 0.5304 24.96 
24 0.0014 0.6368 26.60 0.0001 0.6607 27.54 0.0002 0.6588 27.52 
25 0.0084 0.6583 26.87 0.0002 0.7300 29.73 0.0003 0.7300 29.70 
26 0.0041 0.4485 24.47 0.0001 0.5267 27.39 0.0003 0.5236 27.33 
27 0.0015 0.5617 24.94 0.0017 0.5853 24.88 0.0002 0.5848 25.22 
28 0.0034 0.5961 27.28 0.0001 0.6560 28.86 0.0002 0.6548 28.85 
29 0.0039 0.6168 24.35 0.0001 0.6934 26.13 0.0003 0.6920 26.07 
30 0.0036 0.5769 23.71 0.0002 0.6638 25.83 0.0003 0.6610 25.79 

Average 0.0035 0.6356 25.58 0.0003 0.6893 27.59 0.0003 0.6879 27.58 
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4.2 Super-resolving real-world blurred low-res images 
In order to validate the robustness of the proposed method to the parameter settings, they are specified exactly the 

same as those in the sythetic experiments in subsection 4.1. In addition, the size of blur kernels for each method is still 
set as 19×19. We also suggest that one should observe the super-resolved images provided below on the computer screen 
for better qualitiative comparison among different methods. 

In Figure 6, another old picture is also 2 times super-resolved with different methods. We see that the non-blind 
approach ANR [11] produces a very blurry image, reflecting the necessity of single image blind SR techniques. We also 
observe that both the proposed approach and bi-L0-L2-norm [18] generate visually pleasant high-res images and also 
reasonable blur kernels from which it is conjectured that the low-res image had undergone a camera shake blur. 
Meanwhile, it is seen that the super-resolved image by Patch Recurrency method [16] is very similar to those by another 
two methods, but a careful inspection tells that the true blur kernel should not have a support as large as that estimated by 
[16]. In Figure 7, an iphone picture is 3 times super-resolved, and the result image by ANR [11] is apparently much blur 
as compared against the results by the three non-parametric blind methods. Observing the estimated blur kernels we see 
that the orientation of the kernel by bi-L0-L2-norm [18] resembles a lot that of the kernel by our method while our kernel 
support is more accurate because one may insepct that our super-resolved image is visually clearer; in the meanwhile it is 
noticed the support of the kernel by Patch Recurrency [16] resembles that of the kernel by our approach but our kernel 
orientiation seems more accurate because of the slightly better visual perception on our super-resolved image. 

 

 
Figure 6. Blind super-resolution (2 times) by ANR [11], Patch Recurrency [16], bi-L0-L2-norm [18], and the proposed approach.  

 

 
Figure 7. Blind super-resolution (3 times) by ANR [11], Patch Recurrency [16], bi-L0-L2-norm [18], and the proposed approach.  

 

5.  CONCLUSION 
Single image nonparametric blind super-resolution is a fundamental image restoration problem yet having been 

largely ignored in the past decades among the computational photography and computer vision communities. This paper 
is majorly motivated by one of our previous works [18], while takes a step further and presents a type of adaptive heavy-
tailed image priors, which result in a new regularized formulation for nonparametric blind super-resolution. To some 
extent, the new prior may be expressed and understood as a generalized integration of the previous normalized sparsity 
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measure and relative total variation. Harnessing the prior, a higher quality intermediate high-res image becomes possible 
and therefore more accurate blur kernel estimation can be accomplished. A great many experiments are performed on 
both synthetic and real-world blurred low-res images, demonstrating the comparative or even superior performance of 
the proposed algorithm convincingly. 
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